Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.07152
Cited By
Input Convex Neural Networks
22 September 2016
Brandon Amos
Lei Xu
J. Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Input Convex Neural Networks"
50 / 107 papers shown
Title
On the Depth of Monotone ReLU Neural Networks and ICNNs
Egor Bakaev
Florestan Brunck
Christoph Hertrich
Daniel Reichman
Amir Yehudayoff
26
0
0
09 May 2025
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Hamidreza Eivazi
Jendrik-Alexander Tröger
Stefan H. A. Wittek
Stefan Hartmann
Andreas Rausch
AI4CE
43
0
0
27 Mar 2025
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Gian-Luca Geuken
P. Kurzeja
David Wiedemann
J. Mosler
46
1
0
12 Feb 2025
Learning Exactly Linearizable Deep Dynamics Models
R. Moriyasu
Masayuki Kusunoki
Kenji Kashima
AI4CE
62
1
0
28 Jan 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
50
0
0
28 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
47
1
0
01 Nov 2024
Stein's method for marginals on large graphical models
Tiangang Cui
Shuigen Liu
X. Tong
43
0
0
15 Oct 2024
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
46
0
0
10 Oct 2024
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Milena Gazdieva
Jaemoo Choi
Alexander Kolesov
Jaewoong Choi
Petr Mokrov
Alexander Korotin
OT
44
0
0
04 Oct 2024
Improving Neural Optimal Transport via Displacement Interpolation
Jaemoo Choi
Yongxin Chen
Jaewoong Choi
OT
43
0
0
03 Oct 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
33
5
0
26 Aug 2024
JacNet: Learning Functions with Structured Jacobians
Jonathan Lorraine
Safwan Hossain
42
6
0
23 Aug 2024
Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks
Birte Boes
Jaan-Willem Simon
H. Holthusen
AI4CE
34
6
0
27 Jul 2024
Graph Neural Networks Gone Hogwild
Olga Solodova
Nick Richardson
Deniz Oktay
Ryan P. Adams
AI4CE
GNN
21
1
0
29 Jun 2024
Neural Approximate Mirror Maps for Constrained Diffusion Models
Berthy T. Feng
Ricardo Baptista
Katherine L. Bouman
MedIm
DiffM
48
3
0
18 Jun 2024
Learning Stable and Passive Neural Differential Equations
Jing Cheng
Ruigang Wang
I. Manchester
29
3
0
19 Apr 2024
Globally Stable Neural Imitation Policies
Amin Abyaneh
Mariana Sosa Guzmán
Hsiu-Chin Lin
43
2
0
07 Mar 2024
State-Constrained Zero-Sum Differential Games with One-Sided Information
Mukesh Ghimire
Lei Zhang
Zhenni Xu
Yi Ren
36
2
0
05 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
41
2
0
05 Mar 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
24
5
0
02 Feb 2024
Admission Prediction in Undergraduate Applications: an Interpretable Deep Learning Approach
Amisha Priyadarshini
Barbara Martinez Neda
Sergio Gago Masagué
FAtt
19
1
0
22 Jan 2024
Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
Zihao Wang
Zhen Wu
18
3
0
15 Jan 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Nonlinear Filtering with Brenier Optimal Transport Maps
Mohammad Al-Jarrah
Niyizhen Jin
Bamdad Hosseini
Amirhossein Taghvaei
27
2
0
21 Oct 2023
A Computational Framework for Solving Wasserstein Lagrangian Flows
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
34
17
0
16 Oct 2023
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
37
2
0
02 Oct 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
24
5
0
19 Aug 2023
Decorrelation using Optimal Transport
M. Algren
J. A. Raine
T. Golling
OT
26
1
0
11 Jul 2023
Generative Modeling through the Semi-dual Formulation of Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
Myung-joo Kang
OT
23
19
0
24 May 2023
Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks with Soft-Thresholding
Chunyan Xiong
Meng Lu
Xiaotong Yu
JIAN-PENG Cao
Zhong Chen
D. Guo
X. Qu
MLT
35
0
0
14 Apr 2023
Meta-Learning Parameterized First-Order Optimizers using Differentiable Convex Optimization
Tanmay Gautam
Samuel Pfrommer
Somayeh Sojoudi
18
2
0
29 Mar 2023
PAD: Towards Principled Adversarial Malware Detection Against Evasion Attacks
Deqiang Li
Shicheng Cui
Yun Li
Jia Xu
Fu Xiao
Shouhuai Xu
AAML
48
17
0
22 Feb 2023
Interval Type-2 Fuzzy Neural Networks for Multi-Label Classification
Dayong Tian
Fei Li
Yiwen Wei
34
0
0
21 Feb 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
50
26
0
09 Feb 2023
Efficient Gradient Approximation Method for Constrained Bilevel Optimization
Siyuan Xu
Minghui Zhu
19
19
0
03 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
24
11
0
31 Jan 2023
LegendreTron: Uprising Proper Multiclass Loss Learning
Kevin Lam
Christian J. Walder
S. Penev
Richard Nock
38
0
0
27 Jan 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
35
27
0
26 Jan 2023
Learning Gradients of Convex Functions with Monotone Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
9
6
0
25 Jan 2023
Analyzing Inexact Hypergradients for Bilevel Learning
Matthias Joachim Ehrhardt
Lindon Roberts
24
8
0
11 Jan 2023
Regularized Optimal Transport Layers for Generalized Global Pooling Operations
Hongteng Xu
Minjie Cheng
36
4
0
13 Dec 2022
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
13
26
0
22 Nov 2022
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
36
61
0
11 Nov 2022
CR-LSO: Convex Neural Architecture Optimization in the Latent Space of Graph Variational Autoencoder with Input Convex Neural Networks
Xuan Rao
Bo Zhao
Xiaosong Yi
74
4
0
11 Nov 2022
Entropic Neural Optimal Transport via Diffusion Processes
Nikita Gushchin
Alexander Kolesov
Alexander Korotin
Dmitry Vetrov
Evgeny Burnaev
OT
DiffM
35
36
0
02 Nov 2022
Non-Linear Coordination Graphs
Yipeng Kang
Tonghan Wang
Xiao-Ren Wu
Qianlan Yang
Chongjie Zhang
29
9
0
26 Oct 2022
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
40
1
0
25 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
46
50
0
04 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
28
6
0
22 Sep 2022
1
2
3
Next