ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.07152
  4. Cited By
Input Convex Neural Networks

Input Convex Neural Networks

22 September 2016
Brandon Amos
Lei Xu
J. Zico Kolter
ArXivPDFHTML

Papers citing "Input Convex Neural Networks"

50 / 107 papers shown
Title
On the Depth of Monotone ReLU Neural Networks and ICNNs
On the Depth of Monotone ReLU Neural Networks and ICNNs
Egor Bakaev
Florestan Brunck
Christoph Hertrich
Daniel Reichman
Amir Yehudayoff
26
0
0
09 May 2025
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Hamidreza Eivazi
Jendrik-Alexander Tröger
Stefan H. A. Wittek
Stefan Hartmann
Andreas Rausch
AI4CE
43
0
0
27 Mar 2025
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Gian-Luca Geuken
P. Kurzeja
David Wiedemann
J. Mosler
46
1
0
12 Feb 2025
Learning Exactly Linearizable Deep Dynamics Models
Learning Exactly Linearizable Deep Dynamics Models
R. Moriyasu
Masayuki Kusunoki
Kenji Kashima
AI4CE
62
1
0
28 Jan 2025
Gradient Networks
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
50
0
0
28 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
47
1
0
01 Nov 2024
Stein's method for marginals on large graphical models
Stein's method for marginals on large graphical models
Tiangang Cui
Shuigen Liu
X. Tong
43
0
0
15 Oct 2024
Deep Generative Quantile Bayes
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
46
0
0
10 Oct 2024
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Milena Gazdieva
Jaemoo Choi
Alexander Kolesov
Jaewoong Choi
Petr Mokrov
Alexander Korotin
OT
44
0
0
04 Oct 2024
Improving Neural Optimal Transport via Displacement Interpolation
Improving Neural Optimal Transport via Displacement Interpolation
Jaemoo Choi
Yongxin Chen
Jaewoong Choi
OT
43
0
0
03 Oct 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
33
5
0
26 Aug 2024
JacNet: Learning Functions with Structured Jacobians
JacNet: Learning Functions with Structured Jacobians
Jonathan Lorraine
Safwan Hossain
42
6
0
23 Aug 2024
Accounting for plasticity: An extension of inelastic Constitutive
  Artificial Neural Networks
Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks
Birte Boes
Jaan-Willem Simon
H. Holthusen
AI4CE
34
6
0
27 Jul 2024
Graph Neural Networks Gone Hogwild
Graph Neural Networks Gone Hogwild
Olga Solodova
Nick Richardson
Deniz Oktay
Ryan P. Adams
AI4CE
GNN
21
1
0
29 Jun 2024
Neural Approximate Mirror Maps for Constrained Diffusion Models
Neural Approximate Mirror Maps for Constrained Diffusion Models
Berthy T. Feng
Ricardo Baptista
Katherine L. Bouman
MedIm
DiffM
48
3
0
18 Jun 2024
Learning Stable and Passive Neural Differential Equations
Learning Stable and Passive Neural Differential Equations
Jing Cheng
Ruigang Wang
I. Manchester
29
3
0
19 Apr 2024
Globally Stable Neural Imitation Policies
Globally Stable Neural Imitation Policies
Amin Abyaneh
Mariana Sosa Guzmán
Hsiu-Chin Lin
43
2
0
07 Mar 2024
State-Constrained Zero-Sum Differential Games with One-Sided Information
State-Constrained Zero-Sum Differential Games with One-Sided Information
Mukesh Ghimire
Lei Zhang
Zhenni Xu
Yi Ren
36
2
0
05 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
41
2
0
05 Mar 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
24
5
0
02 Feb 2024
Admission Prediction in Undergraduate Applications: an Interpretable
  Deep Learning Approach
Admission Prediction in Undergraduate Applications: an Interpretable Deep Learning Approach
Amisha Priyadarshini
Barbara Martinez Neda
Sergio Gago Masagué
FAtt
19
1
0
22 Jan 2024
Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
Zihao Wang
Zhen Wu
18
3
0
15 Jan 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Nonlinear Filtering with Brenier Optimal Transport Maps
Nonlinear Filtering with Brenier Optimal Transport Maps
Mohammad Al-Jarrah
Niyizhen Jin
Bamdad Hosseini
Amirhossein Taghvaei
27
2
0
21 Oct 2023
A Computational Framework for Solving Wasserstein Lagrangian Flows
A Computational Framework for Solving Wasserstein Lagrangian Flows
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
34
17
0
16 Oct 2023
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
37
2
0
02 Oct 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
24
5
0
19 Aug 2023
Decorrelation using Optimal Transport
Decorrelation using Optimal Transport
M. Algren
J. A. Raine
T. Golling
OT
26
1
0
11 Jul 2023
Generative Modeling through the Semi-dual Formulation of Unbalanced
  Optimal Transport
Generative Modeling through the Semi-dual Formulation of Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
Myung-joo Kang
OT
23
19
0
24 May 2023
Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks
  with Soft-Thresholding
Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks with Soft-Thresholding
Chunyan Xiong
Meng Lu
Xiaotong Yu
JIAN-PENG Cao
Zhong Chen
D. Guo
X. Qu
MLT
35
0
0
14 Apr 2023
Meta-Learning Parameterized First-Order Optimizers using Differentiable
  Convex Optimization
Meta-Learning Parameterized First-Order Optimizers using Differentiable Convex Optimization
Tanmay Gautam
Samuel Pfrommer
Somayeh Sojoudi
18
2
0
29 Mar 2023
PAD: Towards Principled Adversarial Malware Detection Against Evasion
  Attacks
PAD: Towards Principled Adversarial Malware Detection Against Evasion Attacks
Deqiang Li
Shicheng Cui
Yun Li
Jia Xu
Fu Xiao
Shouhuai Xu
AAML
48
17
0
22 Feb 2023
Interval Type-2 Fuzzy Neural Networks for Multi-Label Classification
Interval Type-2 Fuzzy Neural Networks for Multi-Label Classification
Dayong Tian
Fei Li
Yiwen Wei
34
0
0
21 Feb 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
50
26
0
09 Feb 2023
Efficient Gradient Approximation Method for Constrained Bilevel
  Optimization
Efficient Gradient Approximation Method for Constrained Bilevel Optimization
Siyuan Xu
Minghui Zhu
19
19
0
03 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
24
11
0
31 Jan 2023
LegendreTron: Uprising Proper Multiclass Loss Learning
LegendreTron: Uprising Proper Multiclass Loss Learning
Kevin Lam
Christian J. Walder
S. Penev
Richard Nock
38
0
0
27 Jan 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
35
27
0
26 Jan 2023
Learning Gradients of Convex Functions with Monotone Gradient Networks
Learning Gradients of Convex Functions with Monotone Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
9
6
0
25 Jan 2023
Analyzing Inexact Hypergradients for Bilevel Learning
Analyzing Inexact Hypergradients for Bilevel Learning
Matthias Joachim Ehrhardt
Lindon Roberts
24
8
0
11 Jan 2023
Regularized Optimal Transport Layers for Generalized Global Pooling
  Operations
Regularized Optimal Transport Layers for Generalized Global Pooling Operations
Hongteng Xu
Minjie Cheng
36
4
0
13 Dec 2022
A Neural-Network-Based Convex Regularizer for Inverse Problems
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
13
26
0
22 Nov 2022
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
36
61
0
11 Nov 2022
CR-LSO: Convex Neural Architecture Optimization in the Latent Space of Graph Variational Autoencoder with Input Convex Neural Networks
CR-LSO: Convex Neural Architecture Optimization in the Latent Space of Graph Variational Autoencoder with Input Convex Neural Networks
Xuan Rao
Bo Zhao
Xiaosong Yi
74
4
0
11 Nov 2022
Entropic Neural Optimal Transport via Diffusion Processes
Entropic Neural Optimal Transport via Diffusion Processes
Nikita Gushchin
Alexander Kolesov
Alexander Korotin
Dmitry Vetrov
Evgeny Burnaev
OT
DiffM
35
36
0
02 Nov 2022
Non-Linear Coordination Graphs
Non-Linear Coordination Graphs
Yipeng Kang
Tonghan Wang
Xiao-Ren Wu
Qianlan Yang
Chongjie Zhang
29
9
0
26 Oct 2022
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
40
1
0
25 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
46
50
0
04 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
  Preserving Flows
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
28
6
0
22 Sep 2022
123
Next