ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.04468
  4. Cited By
Sampling Generative Networks

Sampling Generative Networks

14 September 2016
Tom White
    GAN
ArXivPDFHTML

Papers citing "Sampling Generative Networks"

12 / 12 papers shown
Title
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
77
3
0
22 Oct 2020
X-Fields: Implicit Neural View-, Light- and Time-Image Interpolation
X-Fields: Implicit Neural View-, Light- and Time-Image Interpolation
Mojtaba Bemana
K. Myszkowski
Hans-Peter Seidel
Tobias Ritschel
21
50
0
01 Oct 2020
Audio query-based music source separation
Audio query-based music source separation
Jie Hwan Lee
Hyeong-Seok Choi
Kyogu Lee
28
44
0
19 Aug 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
26
196
0
24 Apr 2019
Diversity-Sensitive Conditional Generative Adversarial Networks
Diversity-Sensitive Conditional Generative Adversarial Networks
Dingdong Yang
Seunghoon Hong
Y. Jang
Tianchen Zhao
Honglak Lee
GAN
39
214
0
25 Jan 2019
Learning a Latent Space of Multitrack Measures
Learning a Latent Space of Multitrack Measures
Ian Simon
Adam Roberts
Colin Raffel
Jesse Engel
Curtis Hawthorne
Douglas Eck
21
52
0
01 Jun 2018
A Hierarchical Latent Vector Model for Learning Long-Term Structure in
  Music
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music
Adam Roberts
Jesse Engel
Colin Raffel
Curtis Hawthorne
Douglas Eck
BDL
41
474
0
13 Mar 2018
Semantic Interpolation in Implicit Models
Semantic Interpolation in Implicit Models
Yannic Kilcher
Aurelien Lucchi
Thomas Hofmann
27
17
0
31 Oct 2017
CosmoGAN: creating high-fidelity weak lensing convergence maps using
  Generative Adversarial Networks
CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks
M. Mustafa
Deborah Bard
W. Bhimji
Z. Lukić
Rami Al-Rfou
J. Kratochvil
GAN
11
123
0
07 Jun 2017
Procedural Content Generation via Machine Learning (PCGML)
Procedural Content Generation via Machine Learning (PCGML)
A. Summerville
Sam Snodgrass
Matthew J. Guzdial
Christoffer Holmgård
Amy K. Hoover
Aaron Isaksen
Andy Nealen
Julian Togelius
3DV
17
385
0
02 Feb 2017
Neural Photo Editing with Introspective Adversarial Networks
Neural Photo Editing with Introspective Adversarial Networks
Andrew Brock
Theodore Lim
J. Ritchie
Nick Weston
GAN
27
457
0
22 Sep 2016
Discriminative Regularization for Generative Models
Discriminative Regularization for Generative Models
Alex Lamb
Vincent Dumoulin
Aaron Courville
DRL
40
65
0
09 Feb 2016
1