ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.00285
  4. Cited By
Understanding Trainable Sparse Coding via Matrix Factorization
v1v2v3v4 (latest)

Understanding Trainable Sparse Coding via Matrix Factorization

1 September 2016
Thomas Moreau
Joan Bruna
ArXiv (abs)PDFHTML

Papers citing "Understanding Trainable Sparse Coding via Matrix Factorization"

10 / 10 papers shown
Title
Tradeoffs between Convergence Speed and Reconstruction Accuracy in
  Inverse Problems
Tradeoffs between Convergence Speed and Reconstruction Accuracy in Inverse Problems
Raja Giryes
Yonina C. Eldar
A. Bronstein
Guillermo Sapiro
69
85
0
30 May 2016
Maximal Sparsity with Deep Networks?
Maximal Sparsity with Deep Networks?
Bo Xin
Yizhou Wang
Wen Gao
David Wipf
3DPC
82
167
0
05 May 2016
Sharp Time--Data Tradeoffs for Linear Inverse Problems
Sharp Time--Data Tradeoffs for Linear Inverse Problems
Samet Oymak
Benjamin Recht
Mahdi Soltanolkotabi
85
89
0
16 Jul 2015
Randomized sketches for kernels: Fast and optimal non-parametric
  regression
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
98
174
0
25 Jan 2015
Convex Optimization: Algorithms and Complexity
Convex Optimization: Algorithms and Complexity
Sébastien Bubeck
97
112
0
20 May 2014
Computational and Statistical Tradeoffs via Convex Relaxation
Computational and Statistical Tradeoffs via Convex Relaxation
V. Chandrasekaran
Michael I. Jordan
146
220
0
05 Nov 2012
Learning Efficient Structured Sparse Models
Learning Efficient Structured Sparse Models
A. Bronstein
Pablo Sprechmann
Guillermo Sapiro
96
42
0
18 Jun 2012
Online Learning for Matrix Factorization and Sparse Coding
Online Learning for Matrix Factorization and Sparse Coding
Julien Mairal
Francis R. Bach
Jean Ponce
Guillermo Sapiro
163
2,615
0
01 Aug 2009
Least angle and $\ell_1$ penalized regression: A review
Least angle and ℓ1\ell_1ℓ1​ penalized regression: A review
Tim Hesterberg
Nam-Hee Choi
L. Meier
C. Fraley
197
301
0
07 Feb 2008
Pathwise coordinate optimization
Pathwise coordinate optimization
J. Friedman
Trevor Hastie
Holger Hofling
Robert Tibshirani
280
2,056
0
10 Aug 2007
1