Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.08614
Cited By
What makes ImageNet good for transfer learning?
30 August 2016
Minyoung Huh
Pulkit Agrawal
Alexei A. Efros
OOD
SSeg
VLM
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What makes ImageNet good for transfer learning?"
50 / 315 papers shown
Title
Understanding the impact of image and input resolution on deep digital pathology patch classifiers
Eu Wern Teh
Graham W. Taylor
19
0
0
29 Apr 2022
Diverse Imagenet Models Transfer Better
Niv Nayman
A. Golbert
Asaf Noy
Tan Ping
Lihi Zelnik-Manor
27
0
0
19 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
49
318
0
06 Apr 2022
How stable are Transferability Metrics evaluations?
A. Agostinelli
Michal Pándy
J. Uijlings
Thomas Mensink
V. Ferrari
35
22
0
04 Apr 2022
Negative Inner-Loop Learning Rates Learn Universal Features
Tom Starshak
26
2
0
18 Mar 2022
Towards understanding deep learning with the natural clustering prior
Simon Carbonnelle
18
0
0
15 Mar 2022
Embedding Earth: Self-supervised contrastive pre-training for dense land cover classification
Michail Tarasiou
S. Zafeiriou
SSL
35
9
0
11 Mar 2022
Towards Inadequately Pre-trained Models in Transfer Learning
Andong Deng
Xingjian Li
Di Hu
Tianyang Wang
Haoyi Xiong
Chengzhong Xu
13
6
0
09 Mar 2022
Data augmentation with mixtures of max-entropy transformations for filling-level classification
Apostolos Modas
Andrea Cavallaro
P. Frossard
22
0
0
08 Mar 2022
Fairness Indicators for Systematic Assessments of Visual Feature Extractors
Priya Goyal
Adriana Romero Soriano
C. Hazirbas
Levent Sagun
Nicolas Usunier
EGVM
22
31
0
15 Feb 2022
2021 BEETL Competition: Advancing Transfer Learning for Subject Independence & Heterogenous EEG Data Sets
Xia Wei
Aldo A. Faisal
Moritz Grosse-Wentrup
Alexandre Gramfort
Sylvain Chevallier
...
Stephen M. Gordon
Vernon J. Lawhern
Maciej Śliwowski
Vincent Rouanne
Piotr Tempczyk
OOD
17
23
0
14 Feb 2022
Investigating Transfer Learning in Graph Neural Networks
Nishai Kooverjee
Steven D. James
Terence L van Zyl
GNN
33
14
0
01 Feb 2022
BigDatasetGAN: Synthesizing ImageNet with Pixel-wise Annotations
Daiqing Li
Huan Ling
Seung Wook Kim
Karsten Kreis
Adela Barriuso
Sanja Fidler
Antonio Torralba
36
103
0
12 Jan 2022
Learning with Less Labels in Digital Pathology via Scribble Supervision from Natural Images
Eu Wern Teh
Graham W. Taylor
8
1
0
07 Jan 2022
Self-Supervised Beat Tracking in Musical Signals with Polyphonic Contrastive Learning
Dorian Desblancs
SSL
21
2
0
05 Jan 2022
Ensembling Off-the-shelf Models for GAN Training
Nupur Kumari
Richard Y. Zhang
Eli Shechtman
Jun-Yan Zhu
34
86
0
16 Dec 2021
An Adaptive Graph Pre-training Framework for Localized Collaborative Filtering
Yiqi Wang
Chaozhuo Li
Zheng Liu
Mingzheng Li
Jiliang Tang
Xing Xie
Lei Chen
Philip S. Yu
28
23
0
14 Dec 2021
Controlled-rearing studies of newborn chicks and deep neural networks
Donsuk Lee
P. Gujarathi
Justin N. Wood
8
10
0
12 Dec 2021
CoSSL: Co-Learning of Representation and Classifier for Imbalanced Semi-Supervised Learning
Yue Fan
Dengxin Dai
Anna Kukleva
Bernt Schiele
16
43
0
08 Dec 2021
Beyond Flatland: Pre-training with a Strong 3D Inductive Bias
Shubhaankar Gupta
Thomas P. O'Connell
Bernhard Egger
22
1
0
30 Nov 2021
AI and the Everything in the Whole Wide World Benchmark
Inioluwa Deborah Raji
Emily M. Bender
Amandalynne Paullada
Emily L. Denton
A. Hanna
30
291
0
26 Nov 2021
Transferability Metrics for Selecting Source Model Ensembles
A. Agostinelli
J. Uijlings
Thomas Mensink
V. Ferrari
15
23
0
25 Nov 2021
Transferability Estimation using Bhattacharyya Class Separability
Michal Pándy
A. Agostinelli
J. Uijlings
V. Ferrari
Thomas Mensink
19
57
0
24 Nov 2021
CytoImageNet: A large-scale pretraining dataset for bioimage transfer learning
Stanley Bryan Z. Hua
Alex X. Lu
Alan M. Moses
CLIP
VLM
16
15
0
23 Nov 2021
Evaluating Self and Semi-Supervised Methods for Remote Sensing Segmentation Tasks
Chaitanya Patel
Shashank Sharma
Valerie J. Pasquarella
Varun Gulshan
SSL
27
15
0
19 Nov 2021
TorchGeo: Deep Learning With Geospatial Data
Adam J. Stewart
Caleb Robinson
Isaac Corley
Anthony Ortiz
J. L. Ferres
Arindam Banerjee
3DPC
32
76
0
17 Nov 2021
Scalable Diverse Model Selection for Accessible Transfer Learning
Daniel Bolya
Rohit Mittapalli
Judy Hoffman
OODD
27
41
0
12 Nov 2021
Do we still need ImageNet pre-training in remote sensing scene classification?
Vladimir Risojević
Vladan Stojnić
38
11
0
05 Nov 2021
Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey
Bonan Min
Hayley L Ross
Elior Sulem
Amir Pouran Ben Veyseh
Thien Huu Nguyen
Oscar Sainz
Eneko Agirre
Ilana Heinz
Dan Roth
LM&MA
VLM
AI4CE
83
1,035
0
01 Nov 2021
A Survey of Self-Supervised and Few-Shot Object Detection
Gabriel Huang
I. Laradji
David Vazquez
Simon Lacoste-Julien
Pau Rodríguez López
ObjD
27
77
0
27 Oct 2021
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
29
79
0
25 Oct 2021
Universality of Winning Tickets: A Renormalization Group Perspective
William T. Redman
Tianlong Chen
Zhangyang Wang
Akshunna S. Dogra
UQCV
62
7
0
07 Oct 2021
Improving Fractal Pre-training
Connor Anderson
Ryan Farrell
88
27
0
06 Oct 2021
On The Transferability of Deep-Q Networks
M. Sabatelli
Pierre Geurts
34
2
0
06 Oct 2021
Visually Grounded Reasoning across Languages and Cultures
Fangyu Liu
Emanuele Bugliarello
E. Ponti
Siva Reddy
Nigel Collier
Desmond Elliott
VLM
LRM
109
168
0
28 Sep 2021
A Study of the Generalizability of Self-Supervised Representations
Atharva Tendle
Mohammad Rashedul Hasan
76
26
0
19 Sep 2021
A Survey on Machine Learning Techniques for Auto Labeling of Video, Audio, and Text Data
Shikun Zhang
Omid Jafari
P. Nagarkar
VLM
14
23
0
08 Sep 2021
Effect of the output activation function on the probabilities and errors in medical image segmentation
Lars Nieradzik
G. Scheuermann
D. Saur
Christina Gillmann
SSeg
MedIm
UQCV
35
6
0
02 Sep 2021
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your Pre-training Effective?
Hiroaki Mikami
Kenji Fukumizu
Shogo Murai
Shuji Suzuki
Yuta Kikuchi
Taiji Suzuki
S. Maeda
Kohei Hayashi
40
12
0
25 Aug 2021
Contrastive Identification of Covariate Shift in Image Data
Matthew Lyle Olson
Thu Nguyen
Gaurav Dixit
Neale Ratzlaff
Weng-Keen Wong
Minsuk Kahng
OOD
30
8
0
18 Aug 2021
Clustering augmented Self-Supervised Learning: Anapplication to Land Cover Mapping
Rahul Ghosh
X. Jia
Chenxi Lin
Zhenong Jin
Vipin Kumar
SSL
35
9
0
16 Aug 2021
Pre-trained Models for Sonar Images
Matias Valdenegro-Toro
Alan Preciado-Grijalva
Bilal Wehbe
VLM
26
11
0
02 Aug 2021
Self-Paced Contrastive Learning for Semi-supervised Medical Image Segmentation with Meta-labels
Jizong Peng
Ping Wang
Chrisitian Desrosiers
M. Pedersoli
SSL
31
63
0
29 Jul 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
229
0
27 Jul 2021
Cats, not CAT scans: a study of dataset similarity in transfer learning for 2D medical image classification
Irma van den Brandt
F. Fok
B. Mulders
Joaquin Vanschoren
V. Cheplygina
31
4
0
13 Jul 2021
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCV
OOD
20
116
0
07 Jul 2021
Improving Multi-Modal Learning with Uni-Modal Teachers
Chenzhuang Du
Tingle Li
Yichen Liu
Zixin Wen
Tianyu Hua
Yue Wang
Hang Zhao
29
45
0
21 Jun 2021
Multirate Training of Neural Networks
Tiffany J. Vlaar
B. Leimkuhler
24
4
0
20 Jun 2021
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
36
52
0
18 Jun 2021
Joining datasets via data augmentation in the label space for neural networks
Jake Zhao
Mingfeng Ou
Linji Xue
Yunkai Cui
Sai Wu
Gang Chen
16
2
0
17 Jun 2021
Previous
1
2
3
4
5
6
7
Next