Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.08225
Cited By
Why does deep and cheap learning work so well?
29 August 2016
Henry W. Lin
Max Tegmark
David Rolnick
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Why does deep and cheap learning work so well?"
50 / 76 papers shown
Title
A Mathematical Philosophy of Explanations in Mechanistic Interpretability -- The Strange Science Part I.i
Kola Ayonrinde
Louis Jaburi
MILM
88
1
0
01 May 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
64
1
0
11 Mar 2025
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
98
475
0
30 Apr 2024
Extracting Formulae in Many-Valued Logic from Deep Neural Networks
Yani Zhang
Helmut Bölcskei
24
0
0
22 Jan 2024
Autonomous Learning of Generative Models with Chemical Reaction Network Ensembles
William G. Poole
T. Ouldridge
Manoj Gopalkrishnan
13
2
0
02 Nov 2023
Deep Neural Networks for Automatic Speaker Recognition Do Not Learn Supra-Segmental Temporal Features
Daniel Neururer
Volker Dellwo
Thilo Stadelmann
36
2
0
01 Nov 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Iterative Magnitude Pruning as a Renormalisation Group: A Study in The Context of The Lottery Ticket Hypothesis
Abu-Al Hassan
33
0
0
06 Aug 2023
Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning
V. Usatyuk
Sergey Egorov
Denis Sapozhnikov
29
3
0
28 Jul 2023
Bayesian Renormalization
D. Berman
Marc S. Klinger
A. G. Stapleton
38
16
0
17 May 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
21
16
0
13 Apr 2023
GenPhys: From Physical Processes to Generative Models
Ziming Liu
Di Luo
Yilun Xu
Tommi Jaakkola
M. Tegmark
AI4CE
24
14
0
05 Apr 2023
From Wide to Deep: Dimension Lifting Network for Parameter-efficient Knowledge Graph Embedding
Borui Cai
Yong Xiang
Longxiang Gao
Di Wu
Heng Zhang
Jiongdao Jin
Tom H. Luan
29
1
0
22 Mar 2023
MOSAIC, acomparison framework for machine learning models
Mattéo Papin
Yann Beaujeault-Taudiere
F. Magniette
VLM
18
0
0
30 Jan 2023
Renormalization in the neural network-quantum field theory correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
39
7
0
22 Dec 2022
Changes from Classical Statistics to Modern Statistics and Data Science
Kai Zhang
Shan-Yu Liu
M. Xiong
34
0
0
30 Oct 2022
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
24
34
0
24 Oct 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
29
10
0
21 Oct 2022
Why neural networks find simple solutions: the many regularizers of geometric complexity
Benoit Dherin
Michael Munn
M. Rosca
David Barrett
57
31
0
27 Sep 2022
Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation
Jeffmin Lin
Gil Goldshlager
Lin Lin
43
22
0
07 Dec 2021
Impossibility Results in AI: A Survey
Mario Brčič
Roman V. Yampolskiy
26
25
0
01 Sep 2021
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group
J. Erdmenger
Kevin T. Grosvenor
R. Jefferson
54
17
0
14 Jul 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
26
138
0
18 Apr 2021
Tensor networks and efficient descriptions of classical data
Sirui Lu
Márton Kanász-Nagy
I. Kukuljan
J. I. Cirac
24
24
0
11 Mar 2021
Deep ReLU Networks Preserve Expected Length
Boris Hanin
Ryan Jeong
David Rolnick
29
14
0
21 Feb 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
35
2
0
04 Jan 2021
Physics-Based Deep Learning for Fiber-Optic Communication Systems
Christian Hager
H. Pfister
24
66
0
27 Oct 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
On Representing (Anti)Symmetric Functions
Marcus Hutter
17
22
0
30 Jul 2020
Modeling Generalization in Machine Learning: A Methodological and Computational Study
Pietro Barbiero
Giovanni Squillero
Alberto Tonda
10
35
0
28 Jun 2020
Thermodynamic Machine Learning through Maximum Work Production
A. B. Boyd
James P. Crutchfield
M. Gu
AI4CE
24
16
0
27 Jun 2020
Predicting First Passage Percolation Shapes Using Neural Networks
Sebastian Rosengren
AI4CE
12
0
0
24 Jun 2020
Hierarchically Compositional Tasks and Deep Convolutional Networks
Arturo Deza
Q. Liao
Andrzej Banburski
T. Poggio
BDL
OOD
25
2
0
24 Jun 2020
Minimum Width for Universal Approximation
Sejun Park
Chulhee Yun
Jaeho Lee
Jinwoo Shin
33
121
0
16 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Adaptive Partial Scanning Transmission Electron Microscopy with Reinforcement Learning
Jeffrey M. Ede
24
12
0
06 Apr 2020
Warwick Electron Microscopy Datasets
Jeffrey M. Ede
22
14
0
02 Mar 2020
A closer look at the approximation capabilities of neural networks
Kai Fong Ernest Chong
21
16
0
16 Feb 2020
Neural network wave functions and the sign problem
A. Szabó
C. Castelnovo
21
69
0
11 Feb 2020
Face representation by deep learning: a linear encoding in a parameter space?
Qiulei Dong
Jiaying Sun
Zhanyi Hu
CVBM
17
1
0
22 Oct 2019
Post-synaptic potential regularization has potential
Enzo Tartaglione
Daniele Perlo
Marco Grangetto
BDL
AAML
27
6
0
19 Jul 2019
Parameterized quantum circuits as machine learning models
Marcello Benedetti
Erika Lloyd
Stefan H. Sack
Mattia Fiorentini
27
869
0
18 Jun 2019
When and Why Metaheuristics Researchers Can Ignore "No Free Lunch" Theorems
James McDermott
FedML
14
17
0
07 Jun 2019
Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade
T. Lindeberg
27
19
0
29 May 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
22
844
0
27 May 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
36
136
0
10 Apr 2019
Deep Neural Networks for Rotation-Invariance Approximation and Learning
C. Chui
Shao-Bo Lin
Ding-Xuan Zhou
24
34
0
03 Apr 2019
Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure
Been Kim
Emily Reif
Martin Wattenberg
Samy Bengio
Michael C. Mozer
33
30
0
04 Mar 2019
How deep is deep enough? -- Quantifying class separability in the hidden layers of deep neural networks
Junhong Lin
C. Metzner
Andreas K. Maier
V. Cevher
Holger Schulze
Patrick Krauss
21
56
0
05 Nov 2018
1
2
Next