11
6

Post-synaptic potential regularization has potential

Abstract

Improving generalization is one of the main challenges for training deep neural networks on classification tasks. In particular, a number of techniques have been proposed, aiming to boost the performance on unseen data: from standard data augmentation techniques to the 2\ell_2 regularization, dropout, batch normalization, entropy-driven SGD and many more.\\ In this work we propose an elegant, simple and principled approach: post-synaptic potential regularization (PSP). We tested this regularization on a number of different state-of-the-art scenarios. Empirical results show that PSP achieves a classification error comparable to more sophisticated learning strategies in the MNIST scenario, while improves the generalization compared to 2\ell_2 regularization in deep architectures trained on CIFAR-10.

View on arXiv
Comments on this paper