Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.06879
Cited By
AIDE: Fast and Communication Efficient Distributed Optimization
24 August 2016
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AIDE: Fast and Communication Efficient Distributed Optimization"
31 / 31 papers shown
Title
Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance
A. Stollenwerk
Laurent Jacques
FedML
23
0
0
17 May 2024
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
22
11
0
15 Apr 2023
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
32
6
0
20 Jun 2022
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
29
14
0
11 Feb 2022
Linear Speedup in Personalized Collaborative Learning
El Mahdi Chayti
Sai Praneeth Karimireddy
Sebastian U. Stich
Nicolas Flammarion
Martin Jaggi
FedML
15
13
0
10 Nov 2021
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
24
23
0
02 Nov 2021
Acceleration in Distributed Optimization under Similarity
Helena Lofstrom
G. Scutari
Tianyue Cao
Alexander Gasnikov
21
26
0
24 Oct 2021
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins
Kumar Kshitij Patel
Ohad Shamir
Nathan Srebro
Blake E. Woodworth
28
15
0
07 Oct 2021
Communication Efficiency in Federated Learning: Achievements and Challenges
Osama Shahid
Seyedamin Pouriyeh
R. Parizi
Quan Z. Sheng
Gautam Srivastava
Liang Zhao
FedML
40
74
0
23 Jul 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
33
77
0
05 Jun 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
32
51
0
14 Feb 2021
Newton Method over Networks is Fast up to the Statistical Precision
Amir Daneshmand
G. Scutari
Pavel Dvurechensky
Alexander Gasnikov
24
21
0
12 Feb 2021
DONE: Distributed Approximate Newton-type Method for Federated Edge Learning
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
Wei Bao
A. R. Balef
B. Zhou
Albert Y. Zomaya
FedML
20
15
0
10 Dec 2020
Toward Multiple Federated Learning Services Resource Sharing in Mobile Edge Networks
Minh N. H. Nguyen
N. H. Tran
Y. Tun
Zhu Han
Choong Seon Hong
FedML
21
49
0
25 Nov 2020
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Yan Sun
Michael W. Mahoney
23
21
0
21 Nov 2020
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
35
109
0
03 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Fast-Convergent Federated Learning
Hung T. Nguyen
Vikash Sehwag
Seyyedali Hosseinalipour
Christopher G. Brinton
M. Chiang
H. Vincent Poor
FedML
26
192
0
26 Jul 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
18
155
0
07 Jan 2020
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
Overcoming Forgetting in Federated Learning on Non-IID Data
N. Shoham
Tomer Avidor
Aviv Keren
Nadav Tal-Israel
Daniel Benditkis
Liron Mor Yosef
Itai Zeitak
CLL
FedML
23
217
0
17 Oct 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
64
2,283
0
04 Jul 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
150
0
27 May 2019
A Distributed Second-Order Algorithm You Can Trust
Celestine Mendler-Dünner
Aurelien Lucchi
Matilde Gargiani
An Bian
Thomas Hofmann
Martin Jaggi
26
32
0
20 Jun 2018
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
Stochastic Nonconvex Optimization with Large Minibatches
Weiran Wang
Nathan Srebro
36
26
0
25 Sep 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
30
127
0
11 Sep 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
16
54
0
21 Feb 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
34
4,588
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
48
1,876
0
08 Oct 2016
1