ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.05842
  4. Cited By
Back to Basics: Unsupervised Learning of Optical Flow via Brightness
  Constancy and Motion Smoothness

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness

20 August 2016
Jason J. Yu
Adam W. Harley
Konstantinos G. Derpanis
ArXivPDFHTML

Papers citing "Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness"

31 / 81 papers shown
Title
Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient
  Hybrid Neural Networks
Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient Hybrid Neural Networks
Chankyu Lee
Adarsh Kosta
A. Z. Zhu
Kenneth Chaney
Kostas Daniilidis
Kaushik Roy
91
160
0
14 Mar 2020
Softmax Splatting for Video Frame Interpolation
Softmax Splatting for Video Frame Interpolation
Simon Niklaus
Feng Liu
41
379
0
11 Mar 2020
Every Frame Counts: Joint Learning of Video Segmentation and Optical
  Flow
Every Frame Counts: Joint Learning of Video Segmentation and Optical Flow
Mingyu Ding
Zhe Wang
Bolei Zhou
Jianping Shi
Zhiwu Lu
Ping Luo
27
72
0
28 Nov 2019
SENSE: a Shared Encoder Network for Scene-flow Estimation
SENSE: a Shared Encoder Network for Scene-flow Estimation
Huaizu Jiang
Deqing Sun
Varun Jampani
Zhaoyang Lv
Erik Learned-Miller
Jan Kautz
3DPC
VOS
24
74
0
27 Oct 2019
Attacking Optical Flow
Attacking Optical Flow
Anurag Ranjan
J. Janai
Andreas Geiger
Michael J. Black
AAML
3DPC
13
87
0
22 Oct 2019
Moving Indoor: Unsupervised Video Depth Learning in Challenging
  Environments
Moving Indoor: Unsupervised Video Depth Learning in Challenging Environments
Junsheng Zhou
Yuwang Wang
K. Qin
Wenjun Zeng
MDE
32
63
0
20 Oct 2019
Visuomotor Understanding for Representation Learning of Driving Scenes
Visuomotor Understanding for Representation Learning of Driving Scenes
Seokju Lee
Junsik Kim
Tae-Hyun Oh
Yongseop Jeong
Donggeun Yoo
Stephen Lin
In So Kweon
SSL
25
11
0
16 Sep 2019
Self-supervised Learning with Geometric Constraints in Monocular Video:
  Connecting Flow, Depth, and Camera
Self-supervised Learning with Geometric Constraints in Monocular Video: Connecting Flow, Depth, and Camera
Yuhua Chen
Cordelia Schmid
C. Sminchisescu
SSL
MDE
25
243
0
12 Jul 2019
Bridging Stereo Matching and Optical Flow via Spatiotemporal
  Correspondence
Bridging Stereo Matching and Optical Flow via Spatiotemporal Correspondence
Hsueh-Ying Lai
Yi-Hsuan Tsai
Wei-Chen Chiu
21
80
0
22 May 2019
Iterative Residual Refinement for Joint Optical Flow and Occlusion
  Estimation
Iterative Residual Refinement for Joint Optical Flow and Occlusion Estimation
Junhwa Hur
Stefan Roth
23
271
0
10 Apr 2019
A Lightweight Optical Flow CNN - Revisiting Data Fidelity and
  Regularization
A Lightweight Optical Flow CNN - Revisiting Data Fidelity and Regularization
Tak-Wai Hui
Xiaoou Tang
Chen Change Loy
3DPC
23
177
0
15 Mar 2019
DDFlow: Learning Optical Flow with Unlabeled Data Distillation
DDFlow: Learning Optical Flow with Unlabeled Data Distillation
Pengpeng Liu
Irwin King
Michael R. Lyu
Jia Xu
11
173
0
25 Feb 2019
Unsupervised Event-based Learning of Optical Flow, Depth, and Egomotion
Unsupervised Event-based Learning of Optical Flow, Depth, and Egomotion
A. Z. Zhu
Liangzhe Yuan
Kenneth Chaney
Kostas Daniilidis
MDE
26
522
0
19 Dec 2018
Learning a Probabilistic Model for Diffeomorphic Registration
Learning a Probabilistic Model for Diffeomorphic Registration
Julian Krebs
H. Delingette
B. Mailhé
N. Ayache
Tommaso Mansi
DiffM
MedIm
28
192
0
18 Dec 2018
Image Reconstruction with Predictive Filter Flow
Image Reconstruction with Predictive Filter Flow
Shu Kong
Charless C. Fowlkes
SupR
24
13
0
28 Nov 2018
A Deep Learning Framework for Unsupervised Affine and Deformable Image
  Registration
A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration
B. D. de Vos
F. Berendsen
M. Viergever
Hessam Sokooti
Marius Staring
Ivana Isgum
MedIm
25
672
0
17 Sep 2018
VoxelMorph: A Learning Framework for Deformable Medical Image
  Registration
VoxelMorph: A Learning Framework for Deformable Medical Image Registration
Guha Balakrishnan
Amy Zhao
M. Sabuncu
John Guttag
Adrian V. Dalca
MedIm
62
1,544
0
14 Sep 2018
DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task
  Consistency
DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency
Yuliang Zou
Zelun Luo
Jia-Bin Huang
MDE
38
472
0
05 Sep 2018
Weakly-Supervised Convolutional Neural Networks for Multimodal Image
  Registration
Weakly-Supervised Convolutional Neural Networks for Multimodal Image Registration
Yipeng Hu
Marc Modat
Eli Gibson
Wenqi Li
N. Ghavami
...
M. Emberton
Sébastien Ourselin
J. A. Noble
D. Barratt
Tom Kamiel Magda Vercauteren
57
381
0
09 Jul 2018
ProFlow: Learning to Predict Optical Flow
ProFlow: Learning to Predict Optical Flow
Daniel Maurer
Andrés Bruhn
21
41
0
03 Jun 2018
Learning Optical Flow via Dilated Networks and Occlusion Reasoning
Learning Optical Flow via Dilated Networks and Occlusion Reasoning
Yi Zhu
Shawn D. Newsam
3DPC
14
13
0
07 May 2018
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera
  Pose
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin
Jianping Shi
MDE
11
1,133
0
06 Mar 2018
Unsupervised End-to-end Learning for Deformable Medical Image
  Registration
Unsupervised End-to-end Learning for Deformable Medical Image Registration
Siyuan Shan
Wen Yan
Xiaoqing Guo
E. Chang
Yubo Fan
Yan Xu
MedIm
27
49
0
23 Nov 2017
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional
  Census Loss
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
Simon Meister
Junhwa Hur
Stefan Roth
3DPC
37
575
0
21 Nov 2017
Frame Interpolation with Multi-Scale Deep Loss Functions and Generative
  Adversarial Networks
Frame Interpolation with Multi-Scale Deep Loss Functions and Generative Adversarial Networks
Joost R. van Amersfoort
Wenzhe Shi
Alejandro Acosta
Francisco Massa
J. Totz
Zehan Wang
Jose Caballero
GAN
13
40
0
16 Nov 2017
Label-driven weakly-supervised learning for multimodal deformable image
  registration
Label-driven weakly-supervised learning for multimodal deformable image registration
Yipeng Hu
Marc Modat
Eli Gibson
N. Ghavami
E. Bonmati
C. Moore
M. Emberton
J. A. Noble
D. Barratt
Tom Kamiel Magda Vercauteren
28
142
0
05 Nov 2017
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
Deqing Sun
Xiaodong Yang
Ming-Yu Liu
Jan Kautz
3DPC
32
2,425
0
07 Sep 2017
Two-Stream Convolutional Networks for Dynamic Texture Synthesis
Two-Stream Convolutional Networks for Dynamic Texture Synthesis
Matthew Tesfaldet
Marcus A. Brubaker
Konstantinos G. Derpanis
36
54
0
21 Jun 2017
Harvesting Multiple Views for Marker-less 3D Human Pose Annotations
Harvesting Multiple Views for Marker-less 3D Human Pose Annotations
Georgios Pavlakos
Xiaowei Zhou
Konstantinos G. Derpanis
Kostas Daniilidis
3DH
27
192
0
16 Apr 2017
Video Frame Synthesis using Deep Voxel Flow
Video Frame Synthesis using Deep Voxel Flow
Ziwei Liu
Raymond A. Yeh
Xiaoou Tang
Yiming Liu
A. Agarwala
38
743
0
08 Feb 2017
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
Eddy Ilg
N. Mayer
Tonmoy Saikia
M. Keuper
Alexey Dosovitskiy
Thomas Brox
3DPC
71
3,062
0
06 Dec 2016
Previous
12