Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04644
Cited By
Towards Evaluating the Robustness of Neural Networks
16 August 2016
Nicholas Carlini
D. Wagner
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Evaluating the Robustness of Neural Networks"
44 / 1,494 papers shown
Title
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Xinyun Chen
Chang-rui Liu
Bo-wen Li
Kimberly Lu
D. Song
AAML
SILM
41
1,805
0
15 Dec 2017
Training Ensembles to Detect Adversarial Examples
Alexander Bagnall
Razvan Bunescu
Gordon Stewart
AAML
18
38
0
11 Dec 2017
NAG: Network for Adversary Generation
Konda Reddy Mopuri
Utkarsh Ojha
Utsav Garg
R. Venkatesh Babu
AAML
19
144
0
09 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
40
1,388
0
08 Dec 2017
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
Cho-Jui Hsieh
GAN
AAML
35
49
0
06 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
21
14
0
03 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
43
418
0
02 Dec 2017
Geometric robustness of deep networks: analysis and improvement
Can Kanbak
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
OOD
AAML
41
130
0
24 Nov 2017
Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training
Xi Wu
Uyeong Jang
Jiefeng Chen
Lingjiao Chen
S. Jha
AAML
35
21
0
21 Nov 2017
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
52
117
0
20 Nov 2017
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
41
145
0
20 Nov 2017
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
Rushil Anirudh
Jayaraman J. Thiagarajan
R. Sridhar
T. Bremer
FAtt
AAML
23
12
0
15 Nov 2017
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
14
104
0
01 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
43
854
0
29 Oct 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming Liu
Min Sun
Jia-Bin Huang
AAML
29
48
0
02 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
637
0
13 Sep 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
18
134
0
11 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
A Formal Framework to Characterize Interpretability of Procedures
Amit Dhurandhar
Vijay Iyengar
Ronny Luss
Karthikeyan Shanmugam
15
19
0
12 Jul 2017
Efficient Data Representation by Selecting Prototypes with Importance Weights
Karthik S. Gurumoorthy
Amit Dhurandhar
Guillermo Cecchi
Charu Aggarwal
21
22
0
05 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
A. Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
77
11,854
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
43
242
0
15 Jun 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
13
154
0
13 Jun 2017
Towards Robust Detection of Adversarial Examples
Tianyu Pang
Chao Du
Yinpeng Dong
Jun Zhu
AAML
33
18
0
02 Jun 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
13
1,196
0
25 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
58
1,842
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
65
2,699
0
19 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
48
1,352
0
18 May 2017
Extending Defensive Distillation
Nicolas Papernot
Patrick McDaniel
AAML
32
118
0
15 May 2017
DeepCorrect: Correcting DNN models against Image Distortions
Tejas S. Borkar
Lina Karam
21
93
0
05 May 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
30
287
0
19 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
25
1,229
0
04 Apr 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
46
196
0
08 Mar 2017
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents
Yen-Chen Lin
Zhang-Wei Hong
Yuan-Hong Liao
Meng-Li Shih
Ming Liu
Min Sun
AAML
11
411
0
08 Mar 2017
Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
T. Dreossi
Alexandre Donzé
S. Seshia
AAML
32
230
0
02 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
21
885
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
25
709
0
21 Feb 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
Vahid Behzadan
Arslan Munir
AAML
SILM
16
274
0
16 Jan 2017
Learning Adversary-Resistant Deep Neural Networks
Qinglong Wang
Wenbo Guo
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
Xue Liu
C. Lee Giles
AAML
18
43
0
05 Dec 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
293
5,842
0
08 Jul 2016
Previous
1
2
3
...
28
29
30