Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.00757
Cited By
Risk minimization by median-of-means tournaments
2 August 2016
Gabor Lugosi
S. Mendelson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Risk minimization by median-of-means tournaments"
38 / 38 papers shown
Title
Do we really need the Rademacher complexities?
Daniel Bartl
S. Mendelson
70
0
0
24 Feb 2025
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational Issues
Morgane Goibert
Clément Calauzènes
Ekhine Irurozki
Stéphan Clémenccon
26
1
0
22 Mar 2023
Robust empirical risk minimization via Newton's method
Eirini Ioannou
Muni Sreenivas Pydi
Po-Ling Loh
23
2
0
30 Jan 2023
On deviation probabilities in non-parametric regression
Anna Ben-Hamou
A. Guyader
37
1
0
25 Jan 2023
On Medians of (Randomized) Pairwise Means
Pierre Laforgue
Stéphan Clémençon
Patrice Bertail
29
12
0
01 Nov 2022
On Catoni's M-Estimation
Pengtao Li
Hanchao Wang
19
0
0
15 Oct 2022
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
35
4
0
24 Aug 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
40
32
0
18 Jul 2022
A universal robustification procedure
Riccardo Passeggeri
Nancy Reid
18
0
0
14 Jun 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
40
25
0
17 May 2022
Byzantine-Robust Federated Linear Bandits
Ali Jadbabaie
Haochuan Li
Jian Qian
Yi Tian
FedML
34
12
0
03 Apr 2022
Exponential Tail Local Rademacher Complexity Risk Bounds Without the Bernstein Condition
Varun Kanade
Patrick Rebeschini
Tomas Vaskevicius
41
10
0
23 Feb 2022
Do we need to estimate the variance in robust mean estimation?
Qiang Sun
OOD
32
7
0
30 Jun 2021
Distribution-Free Robust Linear Regression
Jaouad Mourtada
Tomas Vaskevicius
Nikita Zhivotovskiy
OOD
36
23
0
25 Feb 2021
On Monte-Carlo methods in convex stochastic optimization
Daniel Bartl
S. Mendelson
30
8
0
19 Jan 2021
Optimal Mean Estimation without a Variance
Yeshwanth Cherapanamjeri
Nilesh Tripuraneni
Peter L. Bartlett
Michael I. Jordan
26
21
0
24 Nov 2020
A spectral algorithm for robust regression with subgaussian rates
Jules Depersin
23
14
0
12 Jul 2020
Robust Compressed Sensing using Generative Models
A. Jalal
Liu Liu
A. Dimakis
Constantine Caramanis
21
39
0
16 Jun 2020
Generalization Bounds in the Presence of Outliers: a Median-of-Means Study
Pierre Laforgue
Guillaume Staerman
Stéphan Clémençon
16
3
0
09 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
45
15
0
01 Jun 2020
TAdam: A Robust Stochastic Gradient Optimizer
Wendyam Eric Lionel Ilboudo
Taisuke Kobayashi
Kenji Sugimoto
ODL
22
12
0
29 Feb 2020
All-In-One Robust Estimator of the Gaussian Mean
A. Dalalyan
A. Minasyan
35
25
0
04 Feb 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
44
632
0
31 Dec 2019
Empirical Risk Minimization under Random Censorship: Theory and Practice
Guillaume Ausset
Stéphan Clémençon
François Portier
25
5
0
05 Jun 2019
A Primer on PAC-Bayesian Learning
Benjamin Guedj
20
221
0
16 Jan 2019
Uniform bounds for robust mean estimators
Stanislav Minsker
OOD
FedML
10
35
0
09 Dec 2018
Robust classification via MOM minimization
Guillaume Lecué
M. Lerasle
Timlothée Mathieu
16
47
0
09 Aug 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
High Dimensional Robust Sparse Regression
L. Liu
Yanyao Shen
Tianyang Li
Constantine Caramanis
14
71
0
29 May 2018
Solvable Integration Problems and Optimal Sample Size Selection
R. Kunsch
E. Novak
Daniel Rudolf
25
15
0
22 May 2018
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
30
220
0
19 Feb 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
36
35
0
13 Feb 2018
Convergence rates of least squares regression estimators with heavy-tailed errors
Q. Han
J. Wellner
21
45
0
07 Jun 2017
Sub-Gaussian estimators of the mean of a random vector
Gábor Lugosi
S. Mendelson
22
169
0
01 Feb 2017
Learning from MOM's principles: Le Cam's approach
Lecué Guillaume
Lerasle Matthieu
40
51
0
08 Jan 2017
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
89
72
0
23 Oct 2016
Learning without Concentration for General Loss Functions
S. Mendelson
63
65
0
13 Oct 2014
Learning without Concentration
S. Mendelson
92
333
0
01 Jan 2014
1