ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.00757
  4. Cited By
Risk minimization by median-of-means tournaments

Risk minimization by median-of-means tournaments

2 August 2016
Gabor Lugosi
S. Mendelson
ArXivPDFHTML

Papers citing "Risk minimization by median-of-means tournaments"

38 / 38 papers shown
Title
Do we really need the Rademacher complexities?
Do we really need the Rademacher complexities?
Daniel Bartl
S. Mendelson
70
0
0
24 Feb 2025
Robust Consensus in Ranking Data Analysis: Definitions, Properties and
  Computational Issues
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational Issues
Morgane Goibert
Clément Calauzènes
Ekhine Irurozki
Stéphan Clémenccon
26
1
0
22 Mar 2023
Robust empirical risk minimization via Newton's method
Robust empirical risk minimization via Newton's method
Eirini Ioannou
Muni Sreenivas Pydi
Po-Ling Loh
23
2
0
30 Jan 2023
On deviation probabilities in non-parametric regression
On deviation probabilities in non-parametric regression
Anna Ben-Hamou
A. Guyader
37
1
0
25 Jan 2023
On Medians of (Randomized) Pairwise Means
On Medians of (Randomized) Pairwise Means
Pierre Laforgue
Stéphan Clémençon
Patrice Bertail
29
12
0
01 Nov 2022
On Catoni's M-Estimation
On Catoni's M-Estimation
Pengtao Li
Hanchao Wang
19
0
0
15 Oct 2022
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
35
4
0
24 Aug 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
40
32
0
18 Jul 2022
A universal robustification procedure
A universal robustification procedure
Riccardo Passeggeri
Nancy Reid
18
0
0
14 Jun 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial
  Corruption and Heavy Tails
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
40
25
0
17 May 2022
Byzantine-Robust Federated Linear Bandits
Byzantine-Robust Federated Linear Bandits
Ali Jadbabaie
Haochuan Li
Jian Qian
Yi Tian
FedML
34
12
0
03 Apr 2022
Exponential Tail Local Rademacher Complexity Risk Bounds Without the
  Bernstein Condition
Exponential Tail Local Rademacher Complexity Risk Bounds Without the Bernstein Condition
Varun Kanade
Patrick Rebeschini
Tomas Vaskevicius
41
10
0
23 Feb 2022
Do we need to estimate the variance in robust mean estimation?
Do we need to estimate the variance in robust mean estimation?
Qiang Sun
OOD
32
7
0
30 Jun 2021
Distribution-Free Robust Linear Regression
Distribution-Free Robust Linear Regression
Jaouad Mourtada
Tomas Vaskevicius
Nikita Zhivotovskiy
OOD
36
23
0
25 Feb 2021
On Monte-Carlo methods in convex stochastic optimization
On Monte-Carlo methods in convex stochastic optimization
Daniel Bartl
S. Mendelson
30
8
0
19 Jan 2021
Optimal Mean Estimation without a Variance
Optimal Mean Estimation without a Variance
Yeshwanth Cherapanamjeri
Nilesh Tripuraneni
Peter L. Bartlett
Michael I. Jordan
26
21
0
24 Nov 2020
A spectral algorithm for robust regression with subgaussian rates
A spectral algorithm for robust regression with subgaussian rates
Jules Depersin
23
14
0
12 Jul 2020
Robust Compressed Sensing using Generative Models
Robust Compressed Sensing using Generative Models
A. Jalal
Liu Liu
A. Dimakis
Constantine Caramanis
21
39
0
16 Jun 2020
Generalization Bounds in the Presence of Outliers: a Median-of-Means
  Study
Generalization Bounds in the Presence of Outliers: a Median-of-Means Study
Pierre Laforgue
Guillaume Staerman
Stéphan Clémençon
16
3
0
09 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
40
15
0
01 Jun 2020
TAdam: A Robust Stochastic Gradient Optimizer
TAdam: A Robust Stochastic Gradient Optimizer
Wendyam Eric Lionel Ilboudo
Taisuke Kobayashi
Kenji Sugimoto
ODL
22
12
0
29 Feb 2020
All-In-One Robust Estimator of the Gaussian Mean
All-In-One Robust Estimator of the Gaussian Mean
A. Dalalyan
A. Minasyan
35
25
0
04 Feb 2020
Robust Aggregation for Federated Learning
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
42
632
0
31 Dec 2019
Empirical Risk Minimization under Random Censorship: Theory and Practice
Empirical Risk Minimization under Random Censorship: Theory and Practice
Guillaume Ausset
Stéphan Clémençon
François Portier
25
5
0
05 Jun 2019
A Primer on PAC-Bayesian Learning
A Primer on PAC-Bayesian Learning
Benjamin Guedj
20
221
0
16 Jan 2019
Uniform bounds for robust mean estimators
Uniform bounds for robust mean estimators
Stanislav Minsker
OOD
FedML
10
35
0
09 Dec 2018
Robust classification via MOM minimization
Robust classification via MOM minimization
Guillaume Lecué
M. Lerasle
Timlothée Mathieu
16
47
0
09 Aug 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
High Dimensional Robust Sparse Regression
High Dimensional Robust Sparse Regression
L. Liu
Yanyao Shen
Tianyang Li
Constantine Caramanis
14
71
0
29 May 2018
Solvable Integration Problems and Optimal Sample Size Selection
Solvable Integration Problems and Optimal Sample Size Selection
R. Kunsch
E. Novak
Daniel Rudolf
25
15
0
22 May 2018
Robust Estimation via Robust Gradient Estimation
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
30
220
0
19 Feb 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
36
35
0
13 Feb 2018
Convergence rates of least squares regression estimators with
  heavy-tailed errors
Convergence rates of least squares regression estimators with heavy-tailed errors
Q. Han
J. Wellner
19
45
0
07 Jun 2017
Sub-Gaussian estimators of the mean of a random vector
Sub-Gaussian estimators of the mean of a random vector
Gábor Lugosi
S. Mendelson
22
169
0
01 Feb 2017
Learning from MOM's principles: Le Cam's approach
Learning from MOM's principles: Le Cam's approach
Lecué Guillaume
Lerasle Matthieu
38
51
0
08 Jan 2017
Simpler PAC-Bayesian Bounds for Hostile Data
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
89
72
0
23 Oct 2016
Learning without Concentration for General Loss Functions
Learning without Concentration for General Loss Functions
S. Mendelson
63
65
0
13 Oct 2014
Learning without Concentration
Learning without Concentration
S. Mendelson
92
333
0
01 Jan 2014
1