Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.02533
Cited By
v1
v2
v3
v4 (latest)
Adversarial examples in the physical world
8 July 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarial examples in the physical world"
50 / 2,769 papers shown
Title
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
141
87
0
02 Oct 2017
Provably Minimally-Distorted Adversarial Examples
Nicholas Carlini
Guy Katz
Clark W. Barrett
D. Dill
AAML
105
89
0
29 Sep 2017
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
85
212
0
17 Sep 2017
A Learning and Masking Approach to Secure Learning
Linh Nguyen
Sky Wang
Arunesh Sinha
AAML
63
2
0
13 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
80
641
0
13 Sep 2017
Can Deep Neural Networks Match the Related Objects?: A Survey on ImageNet-trained Classification Models
Han S. Lee
Heechul Jung
Alex A. Agarwal
Junmo Kim
85
6
0
12 Sep 2017
Art of singular vectors and universal adversarial perturbations
Valentin Khrulkov
Ivan Oseledets
AAML
78
132
0
11 Sep 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
93
137
0
11 Sep 2017
Towards Proving the Adversarial Robustness of Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel J. Kochenderfer
AAML
OOD
107
118
0
08 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
53
15
0
08 Sep 2017
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid
Marco Melis
Ambra Demontis
Battista Biggio
Gavin Brown
Giorgio Fumera
Fabio Roli
AAML
79
98
0
23 Aug 2017
Learning Universal Adversarial Perturbations with Generative Models
Jamie Hayes
G. Danezis
AAML
84
54
0
17 Aug 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
115
1,894
0
14 Aug 2017
Cascade Adversarial Machine Learning Regularized with a Unified Embedding
Taesik Na
J. Ko
Saibal Mukhopadhyay
AAML
GAN
95
102
0
08 Aug 2017
Robust Physical-World Attacks on Deep Learning Models
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
Basel Alomair
AAML
143
595
0
27 Jul 2017
Synthesizing Robust Adversarial Examples
Anish Athalye
Logan Engstrom
Ilya Sutskever
Kevin Kwok
AAML
68
66
0
24 Jul 2017
Efficient Defenses Against Adversarial Attacks
Valentina Zantedeschi
Maria-Irina Nicolae
Ambrish Rawat
AAML
74
297
0
21 Jul 2017
APE-GAN: Adversarial Perturbation Elimination with GAN
Shiwei Shen
Guoqing Jin
Feng Dai
Yongdong Zhang
GAN
122
221
0
18 Jul 2017
Houdini: Fooling Deep Structured Prediction Models
Moustapha Cissé
Yossi Adi
Natalia Neverova
Joseph Keshet
AAML
90
272
0
17 Jul 2017
Adversarial Dropout for Supervised and Semi-supervised Learning
Sungrae Park
Jun-Keon Park
Su-Jin Shin
Il-Chul Moon
GAN
99
174
0
12 Jul 2017
NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
104
282
0
12 Jul 2017
Towards Crafting Text Adversarial Samples
Suranjana Samanta
S. Mehta
AAML
85
222
0
10 Jul 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
123
172
0
08 Jul 2017
UPSET and ANGRI : Breaking High Performance Image Classifiers
Sayantan Sarkar
Ankan Bansal
U. Mahbub
Rama Chellappa
AAML
83
108
0
04 Jul 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
174
1,832
0
16 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
Basel Alomair
AAML
117
242
0
15 Jun 2017
Certified Defenses for Data Poisoning Attacks
Jacob Steinhardt
Pang Wei Koh
Percy Liang
AAML
168
762
0
09 Jun 2017
Towards Robust Detection of Adversarial Examples
Tianyu Pang
Chao Du
Yinpeng Dong
Jun Zhu
AAML
87
18
0
02 Jun 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
56
1,210
0
25 May 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
131
512
0
23 May 2017
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
AAML
133
219
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
140
1,869
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
217
2,738
0
19 May 2017
Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
AAML
89
307
0
08 May 2017
Detecting Adversarial Samples Using Density Ratio Estimates
Lovedeep Gondara
AAML
31
4
0
05 May 2017
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
145
284
0
28 Apr 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
177
288
0
19 Apr 2017
Adversarial and Clean Data Are Not Twins
Zhitao Gong
Wenlu Wang
Wei-Shinn Ku
AAML
64
158
0
17 Apr 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
127
558
0
11 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
123
1,528
0
11 Apr 2017
Enhancing Robustness of Machine Learning Systems via Data Transformations
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
114
231
0
09 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
104
1,283
0
04 Apr 2017
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
Jiajun Lu
Theerasit Issaranon
David A. Forsyth
GAN
120
381
0
01 Apr 2017
Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective
Seong Joon Oh
Mario Fritz
Bernt Schiele
CVBM
AAML
431
162
0
28 Mar 2017
Adversarial Transformation Networks: Learning to Generate Adversarial Examples
S. Baluja
Ian S. Fischer
GAN
87
286
0
28 Mar 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GAN
AAML
113
935
0
24 Mar 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
90
107
0
13 Mar 2017
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents
Yen-Chen Lin
Zhang-Wei Hong
Yuan-Hong Liao
Meng-Li Shih
Ming-Yuan Liu
Min Sun
AAML
141
418
0
08 Mar 2017
Adversarial Examples for Semantic Image Segmentation
Volker Fischer
Mummadi Chaithanya Kumar
J. H. Metzen
Thomas Brox
SSeg
GAN
AAML
102
119
0
03 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
117
896
0
01 Mar 2017
Previous
1
2
3
...
54
55
56
Next