Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
50 / 1,157 papers shown
Title
Stochastic Adaptive Line Search for Differentially Private Optimization
Chen Chen
Jaewoo Lee
30
14
0
18 Aug 2020
Siloed Federated Learning for Multi-Centric Histopathology Datasets
M. Andreux
Jean Ogier du Terrail
C. Béguier
Eric W. Tramel
FedML
OOD
AI4CE
20
113
0
17 Aug 2020
Fast Dimension Independent Private AdaGrad on Publicly Estimated Subspaces
Peter Kairouz
Mónica Ribero
Keith Rush
Abhradeep Thakurta
93
14
0
14 Aug 2020
Synthesizing Property & Casualty Ratemaking Datasets using Generative Adversarial Networks
Marie-Pier Côté
Brian Hartman
Olivier Mercier
Joshua Meyers
Jared Cummings
Elijah Harmon
GAN
SyDa
33
8
0
13 Aug 2020
Differentially Private Accelerated Optimization Algorithms
Nurdan Kuru
cS. .Ilker Birbil
Mert Gurbuzbalaban
S. Yıldırım
38
23
0
05 Aug 2020
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
38
125
0
05 Aug 2020
Federated Learning with Sparsification-Amplified Privacy and Adaptive Optimization
Rui Hu
Yanmin Gong
Yuanxiong Guo
FedML
34
55
0
01 Aug 2020
Correlated Data in Differential Privacy: Definition and Analysis
Tao Zhang
Tianqing Zhu
Renping Liu
Wanlei Zhou
29
13
0
01 Aug 2020
SMAP: A Joint Dimensionality Reduction Scheme for Secure Multi-Party Visualization
Jiazhi Xia
Tianxiang Chen
Lei Zhang
Wei Chen
Yang Chen
X. Zhang
C. Xie
Tobias Schreck
15
11
0
30 Jul 2020
Membership Leakage in Label-Only Exposures
Zheng Li
Yang Zhang
34
237
0
30 Jul 2020
Learner's Dilemma: IoT Devices Training Strategies in Collaborative Deep Learning
Deepti Gupta
O. Kayode
Smriti Bhatt
Maanak Gupta
A. Tosun
21
23
0
30 Jul 2020
VFL: A Verifiable Federated Learning with Privacy-Preserving for Big Data in Industrial IoT
Anmin Fu
Xianglong Zhang
N. Xiong
Yansong Gao
Huaqun Wang
FedML
24
174
0
27 Jul 2020
Anonymizing Machine Learning Models
Abigail Goldsteen
Gilad Ezov
Ron Shmelkin
Micha Moffie
Ariel Farkash
MIACV
19
5
0
26 Jul 2020
Private Post-GAN Boosting
Marcel Neunhoeffer
Zhiwei Steven Wu
Cynthia Dwork
122
29
0
23 Jul 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
24
116
0
22 Jul 2020
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
David B. Blumenthal
T. Kacprowski
M. List
...
Harald H. H. W. Schmidt
A. Schwalber
Christof Tschohl
Andrea Wohner
Jan Baumbach
28
60
0
22 Jul 2020
IBM Federated Learning: an Enterprise Framework White Paper V0.1
Heiko Ludwig
Nathalie Baracaldo
Gegi Thomas
Yi Zhou
Ali Anwar
...
Sean Laguna
Mikhail Yurochkin
Mayank Agarwal
Ebube Chuba
Annie Abay
FedML
131
157
0
22 Jul 2020
Asynchronous Federated Learning with Reduced Number of Rounds and with Differential Privacy from Less Aggregated Gaussian Noise
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
FedML
28
28
0
17 Jul 2020
Federated Learning in Mobile Edge Computing: An Edge-Learning Perspective for Beyond 5G
Shashank Jere
Q. Fan
Bodong Shang
Lianjun Li
Lingjia Liu
27
10
0
15 Jul 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
39
213
0
15 Jul 2020
Differentially private cross-silo federated learning
Mikko A. Heikkilä
A. Koskela
Kana Shimizu
Samuel Kaski
Antti Honkela
FedML
29
24
0
10 Jul 2020
The Trade-Offs of Private Prediction
Laurens van der Maaten
Awni Y. Hannun
25
22
0
09 Jul 2020
Bypassing the Ambient Dimension: Private SGD with Gradient Subspace Identification
Yingxue Zhou
Zhiwei Steven Wu
A. Banerjee
29
108
0
07 Jul 2020
PPaaS: Privacy Preservation as a Service
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
27
9
0
04 Jul 2020
A Statistical Overview on Data Privacy
Fang Liu
19
5
0
01 Jul 2020
Reducing Risk of Model Inversion Using Privacy-Guided Training
Abigail Goldsteen
Gilad Ezov
Ariel Farkash
33
4
0
29 Jun 2020
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds
Yingxue Zhou
Xiangyi Chen
Mingyi Hong
Zhiwei Steven Wu
A. Banerjee
32
25
0
24 Jun 2020
Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks
Lixin Fan
Kam Woh Ng
Ce Ju
Tianyu Zhang
Chang Liu
Chee Seng Chan
Qiang Yang
MIACV
17
63
0
20 Jun 2020
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell
Insu Han
Elvis Dohmatob
Jennifer Gillenwater
Victor-Emmanuel Brunel
31
16
0
17 Jun 2020
SPEED: Secure, PrivatE, and Efficient Deep learning
Arnaud Grivet Sébert
Rafael Pinot
Martin Zuber
Cédric Gouy-Pailler
Renaud Sirdey
FedML
15
20
0
16 Jun 2020
Model Explanations with Differential Privacy
Neel Patel
Reza Shokri
Yair Zick
SILM
FedML
28
32
0
16 Jun 2020
Balance is key: Private median splits yield high-utility random trees
Shorya Consul
Sinead Williamson
25
2
0
15 Jun 2020
Towards practical differentially private causal graph discovery
Lun Wang
Qi Pang
D. Song
31
13
0
15 Jun 2020
The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems
Sixu Hu
Yuan N. Li
Xu Liu
Yue Liu
Zhaomin Wu
Bingsheng He
FedML
23
54
0
14 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
27
18
0
14 Jun 2020
FLeet: Online Federated Learning via Staleness Awareness and Performance Prediction
Georgios Damaskinos
R. Guerraoui
Anne-Marie Kermarrec
Vlad Nitu
Rhicheek Patra
Francois Taiani
21
54
0
12 Jun 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
24
192
0
12 Jun 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
35
50
0
11 Jun 2020
Secure Byzantine-Robust Machine Learning
Lie He
Sai Praneeth Karimireddy
Martin Jaggi
OOD
26
58
0
08 Jun 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
30
94
0
08 Jun 2020
Privacy Adversarial Network: Representation Learning for Mobile Data Privacy
Sicong Liu
Junzhao Du
Anshumali Shrivastava
Lin Zhong
59
14
0
08 Jun 2020
Generation of Differentially Private Heterogeneous Electronic Health Records
Kieran Chin-Cheong
Thomas M. Sutter
Julia E. Vogt
SyDa
14
6
0
05 Jun 2020
Federated Learning for 6G Communications: Challenges, Methods, and Future Directions
Yi Liu
Xingliang Yuan
Zehui Xiong
Jiawen Kang
Xiaofei Wang
Dusit Niyato
FedML
AI4CE
10
279
0
04 Jun 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
24
149
0
21 May 2020
Privacy Preserving Face Recognition Utilizing Differential Privacy
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
D. Liu
S. Çamtepe
PICV
52
118
0
21 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
35
83
0
18 May 2020
Near Instance-Optimality in Differential Privacy
Hilal Asi
John C. Duchi
34
38
0
16 May 2020
Efficient Federated Learning over Multiple Access Channel with Differential Privacy Constraints
Amir Sonee
Stefano Rini
19
16
0
15 May 2020
Federated Recommendation System via Differential Privacy
Tan Li
Linqi Song
Christina Fragouli
FedML
29
60
0
14 May 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
22
204
0
10 May 2020
Previous
1
2
3
...
18
19
20
...
22
23
24
Next