Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.05340
Cited By
Exponential expressivity in deep neural networks through transient chaos
16 June 2016
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exponential expressivity in deep neural networks through transient chaos"
49 / 148 papers shown
Title
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
18
19
0
27 May 2019
Is Deeper Better only when Shallow is Good?
Eran Malach
Shai Shalev-Shwartz
28
45
0
08 Mar 2019
Mean-field Analysis of Batch Normalization
Ming-Bo Wei
J. Stokes
D. Schwab
MLT
33
8
0
06 Mar 2019
On the Impact of the Activation Function on Deep Neural Networks Training
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
ODL
25
195
0
19 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
34
1,077
0
18 Feb 2019
Capacity allocation analysis of neural networks: A tool for principled architecture design
Jonathan Donier
22
4
0
12 Feb 2019
On the security relevance of weights in deep learning
Kathrin Grosse
T. A. Trost
Marius Mosbach
Michael Backes
Dietrich Klakow
AAML
32
6
0
08 Feb 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
21
94
0
28 Jan 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
34
40
0
25 Jan 2019
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
23
191
0
29 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
25
307
0
11 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
47
192
0
02 Oct 2018
A theoretical framework for deep locally connected ReLU network
Yuandong Tian
PINN
25
10
0
28 Sep 2018
Fisher Information and Natural Gradient Learning of Random Deep Networks
S. Amari
Ryo Karakida
Masafumi Oizumi
19
34
0
22 Aug 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Deep Generative Modeling for Scene Synthesis via Hybrid Representations
Zaiwei Zhang
Zhenpei Yang
Chongyang Ma
Linjie Luo
Alexander G. Huth
E. Vouga
Qi-Xing Huang
GAN
3DPC
21
125
0
06 Aug 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
57
1,395
0
22 Jun 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
30
134
0
20 Jun 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
349
0
14 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
47
140
0
04 Jun 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
18
226
0
22 May 2018
Tropical Geometry of Deep Neural Networks
Liwen Zhang
Gregory Naitzat
Lek-Heng Lim
40
137
0
18 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
35
550
0
30 Apr 2018
Analysis on the Nonlinear Dynamics of Deep Neural Networks: Topological Entropy and Chaos
Husheng Li
22
11
0
03 Apr 2018
The Emergence of Spectral Universality in Deep Networks
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
21
170
0
27 Feb 2018
On Characterizing the Capacity of Neural Networks using Algebraic Topology
William H. Guss
Ruslan Salakhutdinov
35
89
0
13 Feb 2018
Deep Learning Works in Practice. But Does it Work in Theory?
L. Hoang
R. Guerraoui
PINN
35
3
0
31 Jan 2018
Mean Field Residual Networks: On the Edge of Chaos
Greg Yang
S. Schoenholz
9
189
0
24 Dec 2017
The exploding gradient problem demystified - definition, prevalence, impact, origin, tradeoffs, and solutions
George Philipp
D. Song
J. Carbonell
ODL
35
46
0
15 Dec 2017
Invariance of Weight Distributions in Rectified MLPs
Russell Tsuchida
Farbod Roosta-Khorasani
M. Gallagher
MLT
32
35
0
24 Nov 2017
Intriguing Properties of Adversarial Examples
E. D. Cubuk
Barret Zoph
S. Schoenholz
Quoc V. Le
AAML
31
84
0
08 Nov 2017
An efficient quantum algorithm for generative machine learning
Xun Gao
Zhengyu Zhang
L. Duan
17
25
0
06 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
1,074
0
01 Nov 2017
Approximating Continuous Functions by ReLU Nets of Minimal Width
Boris Hanin
Mark Sellke
41
229
0
31 Oct 2017
How deep learning works --The geometry of deep learning
Xiao Dong
Jiasong Wu
Ling Zhou
GNN
35
8
0
30 Oct 2017
A Correspondence Between Random Neural Networks and Statistical Field Theory
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
19
20
0
18 Oct 2017
Classification and Geometry of General Perceptual Manifolds
SueYeon Chung
Daniel D. Lee
H. Sompolinsky
14
151
0
17 Oct 2017
Do Neural Nets Learn Statistical Laws behind Natural Language?
Shuntaro Takahashi
Kumiko Tanaka-Ishii
41
27
0
16 Jul 2017
Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems
J. C. Ye
Yoseob Han
Eunju Cha
36
16
0
03 Jul 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
34
336
0
10 Jun 2017
Robustness of classifiers to universal perturbations: a geometric perspective
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
Stefano Soatto
AAML
24
118
0
26 May 2017
The power of deeper networks for expressing natural functions
David Rolnick
Max Tegmark
36
174
0
16 May 2017
Survey of Expressivity in Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
30
15
0
24 Nov 2016
Deep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis
Yoseob Han
J. Yoo
J. C. Ye
32
203
0
19 Nov 2016
Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification
Woong Bae
J. Yoo
J. C. Ye
SupR
24
177
0
19 Nov 2016
Why does deep and cheap learning work so well?
Henry W. Lin
Max Tegmark
David Rolnick
40
602
0
29 Aug 2016
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
29
777
0
16 Jun 2016
Quantifying the probable approximation error of probabilistic inference programs
Marco F. Cusumano-Towner
Vikash K. Mansinghka
33
7
0
31 May 2016
Previous
1
2
3