ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.05312
  4. Cited By
Successor Features for Transfer in Reinforcement Learning
v1v2 (latest)

Successor Features for Transfer in Reinforcement Learning

16 June 2016
André Barreto
Will Dabney
Rémi Munos
Jonathan J. Hunt
Tom Schaul
H. V. Hasselt
David Silver
ArXiv (abs)PDFHTML

Papers citing "Successor Features for Transfer in Reinforcement Learning"

50 / 203 papers shown
Title
PsiPhi-Learning: Reinforcement Learning with Demonstrations using
  Successor Features and Inverse Temporal Difference Learning
PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning
Angelos Filos
Clare Lyle
Y. Gal
Sergey Levine
Natasha Jaques
Gregory Farquhar
81
22
0
24 Feb 2021
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Victor Campos
Pablo Sprechmann
Steven Hansen
André Barreto
Steven Kapturowski
Alex Vitvitskyi
Adria Puigdomenech Badia
Charles Blundell
OffRLOnRL
79
26
0
24 Feb 2021
Annotating Motion Primitives for Simplifying Action Search in
  Reinforcement Learning
Annotating Motion Primitives for Simplifying Action Search in Reinforcement Learning
I. Sledge
Darshan W. Bryner
José C. Príncipe
102
1
0
24 Feb 2021
Transfer Reinforcement Learning across Homotopy Classes
Transfer Reinforcement Learning across Homotopy Classes
Zhangjie Cao
Minae Kwon
Dorsa Sadigh
49
17
0
10 Feb 2021
Discovering a set of policies for the worst case reward
Discovering a set of policies for the worst case reward
Tom Zahavy
André Barreto
D. Mankowitz
Shaobo Hou
Brendan O'Donoghue
Iurii Kemaev
Satinder Singh
OffRL
61
23
0
08 Feb 2021
Learn Dynamic-Aware State Embedding for Transfer Learning
Learn Dynamic-Aware State Embedding for Transfer Learning
Kaige Yang
54
1
0
06 Jan 2021
LISPR: An Options Framework for Policy Reuse with Reinforcement Learning
LISPR: An Options Framework for Policy Reuse with Reinforcement Learning
D. Graves
Jun Jin
Jun Luo
80
2
0
29 Dec 2020
Autotelic Agents with Intrinsically Motivated Goal-Conditioned
  Reinforcement Learning: a Short Survey
Autotelic Agents with Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short Survey
Cédric Colas
Tristan Karch
Olivier Sigaud
Pierre-Yves Oudeyer
154
95
0
17 Dec 2020
Learning Cross-Domain Correspondence for Control with Dynamics
  Cycle-Consistency
Learning Cross-Domain Correspondence for Control with Dynamics Cycle-Consistency
Qiang Zhang
Tete Xiao
Alexei A. Efros
Lerrel Pinto
Xiaolong Wang
88
65
0
17 Dec 2020
C-Learning: Learning to Achieve Goals via Recursive Classification
C-Learning: Learning to Achieve Goals via Recursive Classification
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
OffRL
85
71
0
17 Nov 2020
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Michael Janner
Igor Mordatch
Sergey Levine
AI4CE
79
35
0
27 Oct 2020
UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
  Learning
UneVEn: Universal Value Exploration for Multi-Agent Reinforcement Learning
Tarun Gupta
Anuj Mahajan
Bei Peng
Wendelin Bohmer
Shimon Whiteson
OffRL
120
50
0
06 Oct 2020
Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution
Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution
Vihang Patil
M. Hofmarcher
Marius-Constantin Dinu
Matthias Dorfer
P. Blies
Johannes Brandstetter
Jose A. Arjona-Medina
Sepp Hochreiter
134
44
0
29 Sep 2020
Latent Representation Prediction Networks
Latent Representation Prediction Networks
Hlynur Davíð Hlynsson
Merlin Schuler
Robin Schiewer
Tobias Glasmachers
Laurenz Wiskott
34
1
0
20 Sep 2020
Transfer Learning in Deep Reinforcement Learning: A Survey
Transfer Learning in Deep Reinforcement Learning: A Survey
Zhuangdi Zhu
Kaixiang Lin
Anil K. Jain
Jiayu Zhou
OffRLLRM
138
604
0
16 Sep 2020
On the Reliability and Generalizability of Brain-inspired Reinforcement
  Learning Algorithms
On the Reliability and Generalizability of Brain-inspired Reinforcement Learning Algorithms
Dongjae Kim
J. Lee
J. Shin
M. Yang
Sang Wan Lee
OffRL
25
2
0
09 Jul 2020
Deep Reinforcement Learning and its Neuroscientific Implications
Deep Reinforcement Learning and its Neuroscientific Implications
M. Botvinick
Jane X. Wang
Will Dabney
Kevin J. Miller
Z. Kurth-Nelson
OffRLAI4CE
97
176
0
07 Jul 2020
Model-based Reinforcement Learning: A Survey
Model-based Reinforcement Learning: A Survey
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
117
49
0
30 Jun 2020
Learning predictive representations in autonomous driving to improve
  deep reinforcement learning
Learning predictive representations in autonomous driving to improve deep reinforcement learning
D. Graves
Nhat M. Nguyen
Kimia Hassanzadeh
Jun Jin
SSL
80
12
0
26 Jun 2020
Rinascimento: using event-value functions for playing Splendor
Rinascimento: using event-value functions for playing Splendor
Ivan Bravi
Simon Lucas
72
2
0
10 Jun 2020
Bayesian Experience Reuse for Learning from Multiple Demonstrators
Bayesian Experience Reuse for Learning from Multiple Demonstrators
Michael Gimelfarb
Scott Sanner
Chi-Guhn Lee
30
0
0
10 Jun 2020
The Value-Improvement Path: Towards Better Representations for
  Reinforcement Learning
The Value-Improvement Path: Towards Better Representations for Reinforcement Learning
Will Dabney
André Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
84
67
0
03 Jun 2020
Time-Variant Variational Transfer for Value Functions
Time-Variant Variational Transfer for Value Functions
Giuseppe Canonaco
Andrea Soprani
M. Roveri
Marcello Restelli
OOD
76
0
0
26 May 2020
DREAM Architecture: a Developmental Approach to Open-Ended Learning in
  Robotics
DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics
Stéphane Doncieux
Nicolas Bredèche
L. L. Goff
Benoît Girard
Alexandre Coninx
...
Natalia Díaz Rodríguez
David Filliat
Timothy M. Hospedales
A. E. Eiben
Richard J. Duro
75
19
0
13 May 2020
Cascade Attribute Network: Decomposing Reinforcement Learning Control
  Policies using Hierarchical Neural Networks
Cascade Attribute Network: Decomposing Reinforcement Learning Control Policies using Hierarchical Neural Networks
Haonan Chang
Zhuo Xu
Masayoshi Tomizuka
38
7
0
07 May 2020
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Lisa Lee
Benjamin Eysenbach
Ruslan Salakhutdinov
S. Gu
Chelsea Finn
SSL
91
26
0
06 Apr 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
106
521
0
30 Mar 2020
Invariant Causal Prediction for Block MDPs
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRLAI4CEOOD
128
144
0
12 Mar 2020
Hierarchically Decoupled Imitation for Morphological Transfer
Hierarchically Decoupled Imitation for Morphological Transfer
D. Hejna
Pieter Abbeel
Lerrel Pinto
LM&Ro
77
43
0
03 Mar 2020
Policy Evaluation Networks
Policy Evaluation Networks
J. Harb
Tom Schaul
Doina Precup
Pierre-Luc Bacon
OffRL
60
37
0
26 Feb 2020
Generalized Hindsight for Reinforcement Learning
Generalized Hindsight for Reinforcement Learning
Alexander C. Li
Lerrel Pinto
Pieter Abbeel
67
70
0
26 Feb 2020
Safe Imitation Learning via Fast Bayesian Reward Inference from
  Preferences
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown
Russell Coleman
R. Srinivasan
S. Niekum
BDL
127
102
0
21 Feb 2020
Explore, Discover and Learn: Unsupervised Discovery of State-Covering
  Skills
Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills
Victor Campos
Alexander R. Trott
Caiming Xiong
R. Socher
Xavier Giró-i-Nieto
Jordi Torres
OffRL
101
156
0
10 Feb 2020
Generalized Hidden Parameter MDPs Transferable Model-based RL in a
  Handful of Trials
Generalized Hidden Parameter MDPs Transferable Model-based RL in a Handful of Trials
Christian F. Perez
F. Such
Theofanis Karaletsos
59
37
0
08 Feb 2020
A Boolean Task Algebra for Reinforcement Learning
A Boolean Task Algebra for Reinforcement Learning
Geraud Nangue Tasse
Steven D. James
Benjamin Rosman
96
55
0
06 Jan 2020
Universal Successor Features for Transfer Reinforcement Learning
Universal Successor Features for Transfer Reinforcement Learning
Chen Ma
Dylan R. Ashley
Junfeng Wen
Yoshua Bengio
OffRL
58
26
0
05 Jan 2020
Deep Bayesian Reward Learning from Preferences
Deep Bayesian Reward Learning from Preferences
Daniel S. Brown
S. Niekum
BDL
89
34
0
10 Dec 2019
Disentangled Cumulants Help Successor Representations Transfer to New
  Tasks
Disentangled Cumulants Help Successor Representations Transfer to New Tasks
Christopher Grimm
I. Higgins
André Barreto
Denis Teplyashin
Markus Wulfmeier
Tim Hertweck
R. Hadsell
Satinder Singh
69
14
0
25 Nov 2019
Gamma-Nets: Generalizing Value Estimation over Timescale
Gamma-Nets: Generalizing Value Estimation over Timescale
Craig Sherstan
Shibhansh Dohare
J. MacGlashan
J. Günther
P. Pilarski
92
12
0
18 Nov 2019
State2vec: Off-Policy Successor Features Approximators
State2vec: Off-Policy Successor Features Approximators
Sephora Madjiheurem
Laura Toni
OODOffRL
41
5
0
22 Oct 2019
Federated Transfer Reinforcement Learning for Autonomous Driving
Federated Transfer Reinforcement Learning for Autonomous Driving
Xinle Liang
Yang Liu
Tianjian Chen
Ming-Yuan Liu
Qiang Yang
62
115
0
14 Oct 2019
Imagined Value Gradients: Model-Based Policy Optimization with
  Transferable Latent Dynamics Models
Imagined Value Gradients: Model-Based Policy Optimization with Transferable Latent Dynamics Models
Arunkumar Byravan
Jost Tobias Springenberg
A. Abdolmaleki
Roland Hafner
Michael Neunert
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
80
41
0
09 Oct 2019
Probabilistic Successor Representations with Kalman Temporal Differences
Probabilistic Successor Representations with Kalman Temporal Differences
J. Geerts
Kimberly L. Stachenfeld
Neil Burgess
51
13
0
06 Oct 2019
DeepMNavigate: Deep Reinforced Multi-Robot Navigation Unifying Local &
  Global Collision Avoidance
DeepMNavigate: Deep Reinforced Multi-Robot Navigation Unifying Local & Global Collision Avoidance
Qingyang Tan
Tingxiang Fan
Jia Pan
Tianyi Zhou
105
24
0
04 Oct 2019
Learning Transferable Domain Priors for Safe Exploration in
  Reinforcement Learning
Learning Transferable Domain Priors for Safe Exploration in Reinforcement Learning
Thommen George Karimpanal
Santu Rana
Sunil R. Gupta
T. Tran
Svetha Venkatesh
OffRLOnRL
64
10
0
10 Sep 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
78
53
0
25 Aug 2019
VUSFA:Variational Universal Successor Features Approximator to Improve
  Transfer DRL for Target Driven Visual Navigation
VUSFA:Variational Universal Successor Features Approximator to Improve Transfer DRL for Target Driven Visual Navigation
Shamane Siriwardhana
Rivindu Weerasekera
Denys J. C. Matthies
Suranga Nanayakkara
39
8
0
18 Aug 2019
Self-Attentional Credit Assignment for Transfer in Reinforcement
  Learning
Self-Attentional Credit Assignment for Transfer in Reinforcement Learning
Johan Ferret
Raphaël Marinier
Matthieu Geist
Olivier Pietquin
OffRL
86
6
0
18 Jul 2019
Attentive Multi-Task Deep Reinforcement Learning
Attentive Multi-Task Deep Reinforcement Learning
Timo Bram
Gino Brunner
Oliver Richter
Roger Wattenhofer
CLL
144
18
0
05 Jul 2019
Learning World Graphs to Accelerate Hierarchical Reinforcement Learning
Learning World Graphs to Accelerate Hierarchical Reinforcement Learning
Wenling Shang
Alexander R. Trott
Stephan Zheng
Caiming Xiong
R. Socher
84
18
0
01 Jul 2019
Previous
12345
Next