Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04820
Cited By
Understanding Probabilistic Sparse Gaussian Process Approximations
15 June 2016
Matthias Bauer
Mark van der Wilk
C. Rasmussen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Probabilistic Sparse Gaussian Process Approximations"
45 / 45 papers shown
Title
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
66
0
0
02 Apr 2025
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
49
0
0
15 Oct 2024
Noise-Aware Differentially Private Regression via Meta-Learning
Ossi Raisa
Stratis Markou
Matthew Ashman
W. Bruinsma
Marlon Tobaben
Antti Honkela
Richard Turner
82
1
0
12 Jun 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes (with Appendix)
Kalvik Jakkala
Srinivas Akella
27
8
0
13 Sep 2023
Multi-Response Heteroscedastic Gaussian Process Models and Their Inference
Taehee Lee
Jun S. Liu
13
1
0
29 Aug 2023
GP-Frontier for Local Mapless Navigation
Mahmoud Ali
Lantao Liu
13
11
0
21 Jul 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
37
8
0
28 Jun 2022
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
80
19
0
30 May 2022
Bridging the reality gap in quantum devices with physics-aware machine learning
D. L. Craig
H. Moon
F. Fedele
D. Lennon
B. V. Straaten
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
28
13
0
22 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
24
3
0
19 Nov 2021
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
Dongwei Ye
Pavel S. Zun
Valeria Krzhizhanovskaya
Alfons G. Hoekstra
27
1
0
11 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
21
31
0
02 Nov 2021
Distributed Gaussian Process Mapping for Robot Teams with Time-varying Communication
James Di
Ehsan Zobeidi
Alec Koppel
Nikolay Atanasov
28
2
0
12 Oct 2021
Adaptive Inducing Points Selection For Gaussian Processes
Théo Galy-Fajou
Manfred Opper
31
15
0
21 Jul 2021
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
42
27
0
06 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
28
6
0
24 May 2021
Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees
Christian Fiedler
C. Scherer
Sebastian Trimpe
24
15
0
07 May 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
30
29
0
16 Apr 2021
How Powerful are Performance Predictors in Neural Architecture Search?
Colin White
Arber Zela
Binxin Ru
Yang Liu
Frank Hutter
22
126
0
02 Apr 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
27
8
0
28 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
26
19
0
12 Feb 2021
A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
29
15
0
12 Dec 2020
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy
Pierre Latouche
Benjamin Guedj
S. Gey
23
4
0
16 Nov 2020
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Steffen Ridderbusch
Christian Offen
Sina Ober-Blobaum
Paul Goulart
10
15
0
10 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
34
34
0
03 Nov 2020
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OOD
AI4Cl
AI4CE
22
3
0
12 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Skew Gaussian Processes for Classification
A. Benavoli
Dario Azzimonti
Dario Piga
GP
32
19
0
26 May 2020
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
42
94
0
02 Mar 2020
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
27
24
0
15 Jan 2020
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Multi-Task Gaussian Processes and Dilated Convolutional Networks for Reconstruction of Reproductive Hormonal Dynamics
Iñigo Urteaga
Tristan Bertin
Theresa M. Hardy
D. Albers
Noémie Elhadad
AI4TS
AI4CE
16
5
0
27 Aug 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
32
15
0
22 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
44
30
0
13 Jun 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
26
151
0
08 Mar 2019
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
26
83
0
03 Jun 2018
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
55
34
0
06 Feb 2018
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
24
25
0
23 May 2016
1