ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.09477
  4. Cited By
A Neural Autoregressive Approach to Collaborative Filtering

A Neural Autoregressive Approach to Collaborative Filtering

31 May 2016
Yin Zheng
Bangsheng Tang
Wenkui Ding
Hanning Zhou
    BDL
ArXivPDFHTML

Papers citing "A Neural Autoregressive Approach to Collaborative Filtering"

22 / 22 papers shown
Title
Improved Diversity-Promoting Collaborative Metric Learning for
  Recommendation
Improved Diversity-Promoting Collaborative Metric Learning for Recommendation
Shilong Bao
Qianqian Xu
Zhiyong Yang
Yuan He
Xiaochun Cao
Qingming Huang
53
5
0
02 Sep 2024
Learning to Infer Unobserved Behaviors: Estimating User's Preference for
  a Site over Other Sites
Learning to Infer Unobserved Behaviors: Estimating User's Preference for a Site over Other Sites
Atanu R. Sinha
Tanay Anand
Paridhi Maheshwari
A. V. Lakshmy
Vishal Jain
11
0
0
15 Dec 2023
$Ae^2I$: A Double Autoencoder for Imputation of Missing Values
Ae2IAe^2IAe2I: A Double Autoencoder for Imputation of Missing Values
Fuchang Gao
24
1
0
16 Jan 2023
The Minority Matters: A Diversity-Promoting Collaborative Metric
  Learning Algorithm
The Minority Matters: A Diversity-Promoting Collaborative Metric Learning Algorithm
Shilong Bao
Qianqian Xu
Zhiyong Yang
Yuan He
Xiaochun Cao
Qingming Huang
38
8
0
30 Sep 2022
SUPER-Rec: SUrrounding Position-Enhanced Representation for Recommendation
Taejun Lim
Siqu Long
Josiah Poon
S. Han
15
0
0
09 Sep 2022
Modeling Dynamic User Preference via Dictionary Learning for Sequential
  Recommendation
Modeling Dynamic User Preference via Dictionary Learning for Sequential Recommendation
Chao Chen
Dongsheng Li
Junchi Yan
Xiaokang Yang
11
15
0
02 Apr 2022
Multiplex Behavioral Relation Learning for Recommendation via Memory
  Augmented Transformer Network
Multiplex Behavioral Relation Learning for Recommendation via Memory Augmented Transformer Network
Lianghao Xia
Chao Huang
Yong-mei Xu
Peng Dai
Bo Zhang
Liefeng Bo
MLAU
97
122
0
08 Oct 2021
Knowledge-Enhanced Hierarchical Graph Transformer Network for
  Multi-Behavior Recommendation
Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation
Lianghao Xia
Chao Huang
Yong-mei Xu
Peng Dai
Xiyue Zhang
Hongsheng Yang
J. Pei
Liefeng Bo
126
193
0
08 Oct 2021
GLocal-K: Global and Local Kernels for Recommender Systems
GLocal-K: Global and Local Kernels for Recommender Systems
S. Han
Taejun Lim
Siqu Long
Bernd Burgstaller
Josiah Poon
16
44
0
27 Aug 2021
Inductive Matrix Completion Using Graph Autoencoder
Inductive Matrix Completion Using Graph Autoencoder
Wei Shen
Chuheng Zhang
Yunkun Tian
Liang Zeng
Xiaonan He
Wanchun Dou
Xiaolong Xu
11
24
0
25 Aug 2021
Modurec: Recommender Systems with Feature and Time Modulation
Modurec: Recommender Systems with Feature and Time Modulation
Javier Maroto
Clément Vignac
P. Frossard
10
1
0
13 Oct 2020
Breaking the Curse of Space Explosion: Towards Efficient NAS with
  Curriculum Search
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
Yong Guo
Yaofo Chen
Yin Zheng
P. Zhao
Jian Chen
Junzhou Huang
Mingkui Tan
27
66
0
07 Jul 2020
Large Scale Tensor Regression using Kernels and Variational Inference
Large Scale Tensor Regression using Kernels and Variational Inference
Robert Hu
Geoff K. Nicholls
Dino Sejdinovic
15
4
0
11 Feb 2020
JSCN: Joint Spectral Convolutional Network for Cross Domain
  Recommendation
JSCN: Joint Spectral Convolutional Network for Cross Domain Recommendation
Zhiwei Liu
Lei Zheng
Jiawei Zhang
Jiayu Han
Philip S. Yu
18
26
0
18 Oct 2019
STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for
  Recommender Systems
STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems
Jiani Zhang
Xingjian Shi
Shenglin Zhao
Irwin King
29
225
0
27 May 2019
On the Difficulty of Evaluating Baselines: A Study on Recommender
  Systems
On the Difficulty of Evaluating Baselines: A Study on Recommender Systems
Steffen Rendle
Li Zhang
Y. Koren
24
126
0
04 May 2019
Geometric Matrix Completion with Deep Conditional Random Fields
Geometric Matrix Completion with Deep Conditional Random Fields
Duc Minh Nguyen
A. Calderbank
Nikos Deligiannis
20
7
0
29 Jan 2019
A Hybrid Variational Autoencoder for Collaborative Filtering
A Hybrid Variational Autoencoder for Collaborative Filtering
Kilol Gupta
M. Raghuprasad
Pankhuri Kumar
19
14
0
14 Jul 2018
Cross-domain Recommendation via Deep Domain Adaptation
Cross-domain Recommendation via Deep Domain Adaptation
Heishiro Kanagawa
Hayato Kobayashi
N. Shimizu
Yukihiro Tagami
Taiji Suzuki
27
92
0
08 Mar 2018
Deep Models of Interactions Across Sets
Deep Models of Interactions Across Sets
Jason S. Hartford
Devon R. Graham
Kevin Leyton-Brown
Siamak Ravanbakhsh
30
157
0
07 Mar 2018
Collaborative Filtering with User-Item Co-Autoregressive Models
Collaborative Filtering with User-Item Co-Autoregressive Models
Chao Du
Chongxuan Li
Yin Zheng
Jun Zhu
Bo Zhang
HAI
15
33
0
21 Dec 2016
Variational Deep Embedding: An Unsupervised and Generative Approach to
  Clustering
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
Zhuxi Jiang
Yin Zheng
Huachun Tan
Bangsheng Tang
Hanning Zhou
BDL
DRL
24
723
0
16 Nov 2016
1