Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.09332
Cited By
Parametric Exponential Linear Unit for Deep Convolutional Neural Networks
30 May 2016
Ludovic Trottier
Philippe Giguère
B. Chaib-draa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parametric Exponential Linear Unit for Deep Convolutional Neural Networks"
19 / 19 papers shown
Title
Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons
Farhad Pourkamali-Anaraki
35
5
0
16 Sep 2024
Bayesian optimization for sparse neural networks with trainable activation functions
M. Fakhfakh
Lotfi Chaari
10
2
0
10 Apr 2023
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
29
71
0
06 Sep 2022
A Discriminative Single-Shot Segmentation Network for Visual Object Tracking
A. Lukežič
Jirí Matas
Matej Kristan
VOS
26
9
0
22 Dec 2021
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
41
641
0
29 Sep 2021
Activation function design for deep networks: linearity and effective initialisation
Michael Murray
V. Abrol
Jared Tanner
ODL
LLMSV
26
18
0
17 May 2021
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function For Deep Learning
Hock Hung Chieng
Noorhaniza Wahid
P. Ong
21
6
0
06 Nov 2020
Constrained Motion Planning Networks X
A. H. Qureshi
Jiangeng Dong
Asfiya Baig
Michael C. Yip
3DPC
22
33
0
17 Oct 2020
EnCoD: Distinguishing Compressed and Encrypted File Fragments
Fabio De Gaspari
Dorjan Hitaj
Giulio Pagnotta
Lorenzo De Carli
L. Mancini
14
18
0
15 Oct 2020
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xihuai Wang
Yi-An Ma
Jitendra Malik
VLM
30
53
0
30 Jun 2020
D3S -- A Discriminative Single Shot Segmentation Tracker
A. Lukežič
Jirí Matas
Matej Kristan
VOS
24
234
0
20 Nov 2019
L*ReLU: Piece-wise Linear Activation Functions for Deep Fine-grained Visual Categorization
Mina Basirat
P. Roth
6
8
0
27 Oct 2019
Motion Planning Networks: Bridging the Gap Between Learning-based and Classical Motion Planners
A. H. Qureshi
Yinglong Miao
Anthony Simeonov
Michael C. Yip
PINN
3DV
34
212
0
13 Jul 2019
Insights into LSTM Fully Convolutional Networks for Time Series Classification
Fazle Karim
Somshubra Majumdar
H. Darabi
AI4TS
24
168
0
27 Feb 2019
Deep Learning using Rectified Linear Units (ReLU)
Abien Fred Agarap
33
3,163
0
22 Mar 2018
Multivariate LSTM-FCNs for Time Series Classification
Fazle Karim
Somshubra Majumdar
H. Darabi
Samuel Harford
AI4TS
29
824
0
14 Jan 2018
Pyramidal RoR for Image Classification
Ke Zhang
Liru Guo
Ce Gao
Zhenbing Zhao
36
20
0
01 Oct 2017
Activation Ensembles for Deep Neural Networks
Mark Harmon
Diego Klabjan
23
35
0
24 Feb 2017
Residual Networks of Residual Networks: Multilevel Residual Networks
Ke Zhang
Miao Sun
T. Han
Xingfang Yuan
Liru Guo
Tao Liu
16
302
0
09 Aug 2016
1