ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08454
  4. Cited By
Linear dynamical neural population models through nonlinear embeddings

Linear dynamical neural population models through nonlinear embeddings

26 May 2016
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
ArXivPDFHTML

Papers citing "Linear dynamical neural population models through nonlinear embeddings"

20 / 20 papers shown
Title
Active learning of neural population dynamics using two-photon holographic optogenetics
Active learning of neural population dynamics using two-photon holographic optogenetics
Andrew Wagenmaker
Lu Mi
Marton Rozsa
Matthew S. Bull
Karel Svoboda
Kayvon Daie
Matthew D. Golub
Kevin Jamieson
77
0
0
03 Dec 2024
BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
Zhengrui Guo
F. Zhou
Wei Wu
Qichen Sun
Lishuang Feng
Jinzhuo Wang
Hao Chen
41
1
0
02 Oct 2024
Diffusion-Based Generation of Neural Activity from Disentangled Latent
  Codes
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffM
SyDa
28
1
0
30 Jul 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Mesoscopic modeling of hidden spiking neurons
Mesoscopic modeling of hidden spiking neurons
Shuqiao Wang
Valentin Schmutz
G. Bellec
W. Gerstner
26
3
0
26 May 2022
Overcoming the Domain Gap in Neural Action Representations
Overcoming the Domain Gap in Neural Action Representations
Semih Günel
Florian Aymanns
S. Honari
Pavan Ramdya
Pascal Fua
31
3
0
02 Dec 2021
Deep inference of latent dynamics with spatio-temporal super-resolution
  using selective backpropagation through time
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
Feng Zhu
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
C. Pandarinath
27
10
0
29 Oct 2021
Entropic Issues in Likelihood-Based OOD Detection
Entropic Issues in Likelihood-Based OOD Detection
Anthony L. Caterini
G. Loaiza-Ganem
OODD
24
15
0
22 Sep 2021
Neural Latents Benchmark '21: Evaluating latent variable models of
  neural population activity
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
50
87
0
09 Sep 2021
Representation learning for neural population activity with Neural Data
  Transformers
Representation learning for neural population activity with Neural Data Transformers
Joel Ye
C. Pandarinath
AI4TS
AI4CE
11
52
0
02 Aug 2021
An Efficient and Effective Second-Order Training Algorithm for
  LSTM-based Adaptive Learning
An Efficient and Effective Second-Order Training Algorithm for LSTM-based Adaptive Learning
Nuri Mert Vural
Salih Ergüt
Suleyman Serdar Kozat
16
12
0
22 Oct 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
24
10
0
20 Sep 2019
The continuous Bernoulli: fixing a pervasive error in variational
  autoencoders
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
G. Loaiza-Ganem
John P. Cunningham
DRL
29
83
0
16 Jul 2019
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
23
34
0
01 Jul 2019
Analyzing biological and artificial neural networks: challenges with
  opportunities for synergy?
Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
David Barrett
Ari S. Morcos
Jakob H. Macke
AI4CE
25
110
0
31 Oct 2018
SOLAR: Deep Structured Representations for Model-Based Reinforcement
  Learning
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang
Sharad Vikram
Laura M. Smith
Pieter Abbeel
Matthew J. Johnson
Sergey Levine
OffRL
23
41
0
28 Aug 2018
Contextual Explanation Networks
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric Xing
CML
35
82
0
29 May 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
16
452
0
30 Sep 2016
LFADS - Latent Factor Analysis via Dynamical Systems
LFADS - Latent Factor Analysis via Dynamical Systems
David Sussillo
Rafal Jozefowicz
L. F. Abbott
C. Pandarinath
AI4CE
26
89
0
22 Aug 2016
Distributed Sequence Memory of Multidimensional Inputs in Recurrent
  Networks
Distributed Sequence Memory of Multidimensional Inputs in Recurrent Networks
Adam S. Charles
Dong Yin
Christopher Rozell
GNN
33
20
0
26 May 2016
1