ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07571
  4. Cited By
Sequential Neural Models with Stochastic Layers

Sequential Neural Models with Stochastic Layers

24 May 2016
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
    BDL
ArXivPDFHTML

Papers citing "Sequential Neural Models with Stochastic Layers"

50 / 223 papers shown
Title
Elements of Sequential Monte Carlo
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
24
95
0
12 Mar 2019
PROPS: Probabilistic personalization of black-box sequence models
PROPS: Probabilistic personalization of black-box sequence models
M. Wojnowicz
Xuan Zhao
AAML
14
0
0
05 Mar 2019
Learning Dynamics Model in Reinforcement Learning by Incorporating the
  Long Term Future
Learning Dynamics Model in Reinforcement Learning by Incorporating the Long Term Future
Nan Rosemary Ke
Amanpreet Singh
Ahmed Touati
Anirudh Goyal
Yoshua Bengio
Devi Parikh
Dhruv Batra
27
48
0
05 Mar 2019
adVAE: A self-adversarial variational autoencoder with Gaussian anomaly
  prior knowledge for anomaly detection
adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection
Xuhong Wang
Ying Du
Shijie Lin
Ping Cui
Yuntian Shen
Yupu Yang
DRL
ViT
UQCV
16
99
0
03 Mar 2019
Stochastic Prediction of Multi-Agent Interactions from Partial
  Observations
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun
Per Karlsson
Jiajun Wu
J. Tenenbaum
Kevin Patrick Murphy
33
89
0
25 Feb 2019
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
Masanori Yamada
Heecheol Kim
Kosuke Miyoshi
Hiroshi Yamakawa
CML
DRL
CoGe
14
4
0
22 Feb 2019
STCN: Stochastic Temporal Convolutional Networks
STCN: Stochastic Temporal Convolutional Networks
Emre Aksan
Otmar Hilliges
BDL
13
61
0
18 Feb 2019
Recurrent Neural Networks with Stochastic Layers for Acoustic Novelty
  Detection
Recurrent Neural Networks with Stochastic Layers for Acoustic Novelty Detection
Duong Nguyen
O. Kirsebom
F. Frazão
Ronan Fablet
Stan Matwin
8
5
0
13 Feb 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
Re-examination of the Role of Latent Variables in Sequence Modeling
Re-examination of the Role of Latent Variables in Sequence Modeling
Zihang Dai
Guokun Lai
Yiming Yang
Shinjae Yoo
BDL
DRL
14
4
0
04 Feb 2019
Latent Normalizing Flows for Discrete Sequences
Latent Normalizing Flows for Discrete Sequences
Zachary M. Ziegler
Alexander M. Rush
BDL
DRL
19
122
0
29 Jan 2019
Self-organization of action hierarchy and compositionality by
  reinforcement learning with recurrent neural networks
Self-organization of action hierarchy and compositionality by reinforcement learning with recurrent neural networks
Dongqi Han
Kenji Doya
Jun Tani
AI4CE
27
20
0
29 Jan 2019
State-Regularized Recurrent Neural Networks
State-Regularized Recurrent Neural Networks
Cheng Wang
Mathias Niepert
18
39
0
25 Jan 2019
A Self-Correcting Deep Learning Approach to Predict Acute Conditions in
  Critical Care
A Self-Correcting Deep Learning Approach to Predict Acute Conditions in Critical Care
Ziyuan Pan
Hao Du
K. Ngiam
Fei Wang
Ping Shum
Mengling Feng
9
12
0
14 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
13
45
0
07 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
18
2
0
03 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
Deep Factors with Gaussian Processes for Forecasting
Deep Factors with Gaussian Processes for Forecasting
Danielle C. Maddix
Bernie Wang
Alex Smola
BDL
UQCV
AI4TS
20
41
0
30 Nov 2018
A General Method for Amortizing Variational Filtering
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
Benchmarking Deep Sequential Models on Volatility Predictions for
  Financial Time Series
Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series
Qiang Zhang
Kyle Birkeland
Yaodong Yang
Y. Liu
22
9
0
08 Nov 2018
A Novel Predictive-Coding-Inspired Variational RNN Model for Online
  Prediction and Recognition
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
Ahmadreza Ahmadi
Jun Tani
BDL
DRL
9
4
0
04 Nov 2018
Forecasting Individualized Disease Trajectories using Interpretable Deep
  Learning
Forecasting Individualized Disease Trajectories using Interpretable Deep Learning
Ahmed Alaa
M. Schaar
14
11
0
24 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
19
110
0
09 Oct 2018
Improving Explorability in Variational Inference with Annealed
  Variational Objectives
Improving Explorability in Variational Inference with Annealed Variational Objectives
Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
DRL
14
47
0
06 Sep 2018
Machine Learning for Spatiotemporal Sequence Forecasting: A Survey
Machine Learning for Spatiotemporal Sequence Forecasting: A Survey
Xingjian Shi
Dit-Yan Yeung
AI4TS
27
86
0
21 Aug 2018
Deep Encoder-Decoder Models for Unsupervised Learning of Controllable
  Speech Synthesis
Deep Encoder-Decoder Models for Unsupervised Learning of Controllable Speech Synthesis
G. Henter
Jaime Lorenzo-Trueba
Xin Wang
Junichi Yamagishi
DRL
SSL
13
61
0
30 Jul 2018
Latent Alignment and Variational Attention
Latent Alignment and Variational Attention
Yuntian Deng
Yoon Kim
Justin T. Chiu
Demi Guo
Alexander M. Rush
BDL
18
110
0
10 Jul 2018
Human-level performance in first-person multiplayer games with
  population-based deep reinforcement learning
Human-level performance in first-person multiplayer games with population-based deep reinforcement learning
Max Jaderberg
Wojciech M. Czarnecki
Iain Dunning
Luke Marris
Guy Lever
...
Joel Z Leibo
David Silver
Demis Hassabis
Koray Kavukcuoglu
T. Graepel
OffRL
34
715
0
03 Jul 2018
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
29
9
0
25 Jun 2018
Stochastic WaveNet: A Generative Latent Variable Model for Sequential
  Data
Stochastic WaveNet: A Generative Latent Variable Model for Sequential Data
Guokun Lai
Bohan Li
Guoqing Zheng
Yiming Yang
BDL
8
21
0
15 Jun 2018
Deep State Space Models for Unconditional Word Generation
Deep State Space Models for Unconditional Word Generation
Florian Schmidt
Thomas Hofmann
22
14
0
12 Jun 2018
Temporal Difference Variational Auto-Encoder
Temporal Difference Variational Auto-Encoder
Karol Gregor
George Papamakarios
F. Besse
Lars Buesing
Theophane Weber
DRL
24
126
0
08 Jun 2018
A Multi-task Deep Learning Architecture for Maritime Surveillance using
  AIS Data Streams
A Multi-task Deep Learning Architecture for Maritime Surveillance using AIS Data Streams
Duong Nguyen
Rodolphe Vadaine
G. Hajduch
R. Garello
Ronan Fablet
14
101
0
06 Jun 2018
A Stochastic Decoder for Neural Machine Translation
A Stochastic Decoder for Neural Machine Translation
P. Schulz
Wilker Aziz
Trevor Cohn
BDL
30
29
0
28 May 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Variational Inference for Data-Efficient Model Learning in POMDPs
Variational Inference for Data-Efficient Model Learning in POMDPs
Sebastian Tschiatschek
Kai Arulkumaran
Jan Stühmer
Katja Hofmann
19
15
0
23 May 2018
Approximate Bayesian inference in spatial environments
Approximate Bayesian inference in spatial environments
Atanas Mirchev
Baris Kayalibay
Maximilian Soelch
Patrick van der Smagt
Justin Bayer
BDL
16
22
0
18 May 2018
Noisin: Unbiased Regularization for Recurrent Neural Networks
Noisin: Unbiased Regularization for Recurrent Neural Networks
Adji Bousso Dieng
Rajesh Ranganath
Jaan Altosaar
David M. Blei
22
22
0
03 May 2018
Generative Temporal Models with Spatial Memory for Partially Observed
  Environments
Generative Temporal Models with Spatial Memory for Partially Observed Environments
Marco Fraccaro
Danilo Jimenez Rezende
Yori Zwols
Alexander Pritzel
S. M. Ali Eslami
Fabio Viola
31
28
0
25 Apr 2018
Learning Awareness Models
Learning Awareness Models
Brandon Amos
Laurent Dinh
Serkan Cabi
Thomas Rothörl
Sergio Gomez Colmenarejo
Alistair Muldal
Tom Erez
Yuval Tassa
Nando de Freitas
Misha Denil
21
44
0
17 Apr 2018
The unreasonable effectiveness of the forget gate
The unreasonable effectiveness of the forget gate
J. Westhuizen
Joan Lasenby
22
86
0
13 Apr 2018
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Eric Zhan
Stephan Zheng
Yisong Yue
Long Sha
P. Lucey
25
88
0
20 Mar 2018
Variational Message Passing with Structured Inference Networks
Variational Message Passing with Structured Inference Networks
Wu Lin
Nicolas Hubacher
Mohammad Emtiyaz Khan
BDL
23
54
0
15 Mar 2018
A Hierarchical Latent Vector Model for Learning Long-Term Structure in
  Music
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music
Adam Roberts
Jesse Engel
Colin Raffel
Curtis Hawthorne
Douglas Eck
BDL
41
474
0
13 Mar 2018
Disentangled Sequential Autoencoder
Disentangled Sequential Autoencoder
Yingzhen Li
Stephan Mandt
CoGe
36
270
0
08 Mar 2018
Stochastic Video Generation with a Learned Prior
Stochastic Video Generation with a Learned Prior
Emily L. Denton
Rob Fergus
VGen
48
525
0
21 Feb 2018
Learning and Querying Fast Generative Models for Reinforcement Learning
Learning and Querying Fast Generative Models for Reinforcement Learning
Lars Buesing
T. Weber
S. Racanière
S. M. Ali Eslami
Danilo Jimenez Rezende
...
Fabio Viola
F. Besse
Karol Gregor
Demis Hassabis
Daan Wierstra
OffRL
19
134
0
08 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
15
121
0
31 Jan 2018
Data-Driven Impulse Response Regularization via Deep Learning
Data-Driven Impulse Response Regularization via Deep Learning
Carl R. Andersson
Niklas Wahlström
Thomas B. Schon
OOD
22
4
0
25 Jan 2018
Previous
12345
Next