ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06423
  4. Cited By
Coresets for Scalable Bayesian Logistic Regression

Coresets for Scalable Bayesian Logistic Regression

20 May 2016
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
ArXivPDFHTML

Papers citing "Coresets for Scalable Bayesian Logistic Regression"

28 / 28 papers shown
Title
Predictive Coresets
Predictive Coresets
Bernardo Flores
54
0
0
08 Feb 2025
Computing Approximate $\ell_p$ Sensitivities
Computing Approximate ℓp\ell_pℓp​ Sensitivities
Swati Padmanabhan
David P. Woodruff
Qiuyi Zhang
45
0
0
07 Nov 2023
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
21
4
0
25 Oct 2023
Optimal Sample Selection Through Uncertainty Estimation and Its
  Application in Deep Learning
Optimal Sample Selection Through Uncertainty Estimation and Its Application in Deep Learning
Yong Lin
Chen Liu
Chen Ye
Qing Lian
Yuan Yao
Tong Zhang
27
4
0
05 Sep 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
39
4
0
21 Apr 2023
Dataset Distillation with Convexified Implicit Gradients
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
41
0
13 Feb 2023
Coresets for Relational Data and The Applications
Coresets for Relational Data and The Applications
Jiaxiang Chen
Qingyuan Yang
Ru Huang
Hu Ding
11
4
0
09 Oct 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training
  Dynamics
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
37
27
0
20 Sep 2022
$p$-Generalized Probit Regression and Scalable Maximum Likelihood
  Estimation via Sketching and Coresets
ppp-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets
Alexander Munteanu
Simon Omlor
Christian Peters
21
10
0
25 Mar 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
30
14
0
11 Mar 2022
Obstacle Aware Sampling for Path Planning
Obstacle Aware Sampling for Path Planning
M. Tukan
Alaa Maalouf
Dan Feldman
Roi Poranne
18
8
0
08 Mar 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
24
13
0
22 Dec 2021
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
17
8
0
06 Dec 2021
A Novel Sequential Coreset Method for Gradient Descent Algorithms
A Novel Sequential Coreset Method for Gradient Descent Algorithms
Jiawei Huang
Ru Huang
Wenjie Liu
N. Freris
Huihua Ding
21
16
0
05 Dec 2021
Introduction to Coresets: Approximated Mean
Introduction to Coresets: Approximated Mean
Alaa Maalouf
Ibrahim Jubran
Dan Feldman
17
6
0
04 Nov 2021
Iterative Teaching by Label Synthesis
Iterative Teaching by Label Synthesis
Weiyang Liu
Zhen Liu
Hanchen Wang
Liam Paull
Bernhard Schölkopf
Adrian Weller
37
16
0
27 Oct 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Oblivious sketching for logistic regression
Oblivious sketching for logistic regression
Alexander Munteanu
Simon Omlor
David P. Woodruff
UQCV
46
17
0
14 Jul 2021
Adversarial Robustness of Streaming Algorithms through Importance
  Sampling
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
22
38
0
28 Jun 2021
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Jianchao Yang
Xiaobing Liu
18
5
0
27 Apr 2021
Coresets via Bilevel Optimization for Continual Learning and Streaming
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
21
226
0
06 Jun 2020
Small-GAN: Speeding Up GAN Training Using Core-sets
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
22
72
0
29 Oct 2019
Distribution Density, Tails, and Outliers in Machine Learning: Metrics
  and Applications
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OOD
OODD
19
62
0
29 Oct 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
30
141
0
17 Jul 2019
Interpreting Black Box Predictions using Fisher Kernels
Interpreting Black Box Predictions using Fisher Kernels
Rajiv Khanna
Been Kim
Joydeep Ghosh
Oluwasanmi Koyejo
FAtt
14
103
0
23 Oct 2018
On Coresets for Logistic Regression
On Coresets for Logistic Regression
Alexander Munteanu
Chris Schwiegelshohn
C. Sohler
David P. Woodruff
19
107
0
22 May 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
19
32
0
26 Sep 2017
Likelihood Inflating Sampling Algorithm
Likelihood Inflating Sampling Algorithm
R. Entezari
Radu V. Craiu
Jeffrey S. Rosenthal
45
22
0
06 May 2016
1