Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.06423
Cited By
Coresets for Scalable Bayesian Logistic Regression
20 May 2016
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Coresets for Scalable Bayesian Logistic Regression"
28 / 28 papers shown
Title
Predictive Coresets
Bernardo Flores
54
0
0
08 Feb 2025
Computing Approximate
ℓ
p
\ell_p
ℓ
p
Sensitivities
Swati Padmanabhan
David P. Woodruff
Qiuyi Zhang
45
0
0
07 Nov 2023
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
21
4
0
25 Oct 2023
Optimal Sample Selection Through Uncertainty Estimation and Its Application in Deep Learning
Yong Lin
Chen Liu
Chen Ye
Qing Lian
Yuan Yao
Tong Zhang
27
4
0
05 Sep 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
39
4
0
21 Apr 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
29
41
0
13 Feb 2023
Coresets for Relational Data and The Applications
Jiaxiang Chen
Qingyuan Yang
Ru Huang
Hu Ding
11
4
0
09 Oct 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
37
27
0
20 Sep 2022
p
p
p
-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets
Alexander Munteanu
Simon Omlor
Christian Peters
21
10
0
25 Mar 2022
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
30
14
0
11 Mar 2022
Obstacle Aware Sampling for Path Planning
M. Tukan
Alaa Maalouf
Dan Feldman
Roi Poranne
18
8
0
08 Mar 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
24
13
0
22 Dec 2021
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
17
8
0
06 Dec 2021
A Novel Sequential Coreset Method for Gradient Descent Algorithms
Jiawei Huang
Ru Huang
Wenjie Liu
N. Freris
Huihua Ding
21
16
0
05 Dec 2021
Introduction to Coresets: Approximated Mean
Alaa Maalouf
Ibrahim Jubran
Dan Feldman
17
6
0
04 Nov 2021
Iterative Teaching by Label Synthesis
Weiyang Liu
Zhen Liu
Hanchen Wang
Liam Paull
Bernhard Schölkopf
Adrian Weller
37
16
0
27 Oct 2021
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Oblivious sketching for logistic regression
Alexander Munteanu
Simon Omlor
David P. Woodruff
UQCV
46
17
0
14 Jul 2021
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
22
38
0
28 Jun 2021
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Jianchao Yang
Xiaobing Liu
18
5
0
27 Apr 2021
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
21
226
0
06 Jun 2020
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
22
72
0
29 Oct 2019
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OOD
OODD
19
62
0
29 Oct 2019
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
30
141
0
17 Jul 2019
Interpreting Black Box Predictions using Fisher Kernels
Rajiv Khanna
Been Kim
Joydeep Ghosh
Oluwasanmi Koyejo
FAtt
14
103
0
23 Oct 2018
On Coresets for Logistic Regression
Alexander Munteanu
Chris Schwiegelshohn
C. Sohler
David P. Woodruff
19
107
0
22 May 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
19
32
0
26 Sep 2017
Likelihood Inflating Sampling Algorithm
R. Entezari
Radu V. Craiu
Jeffrey S. Rosenthal
45
22
0
06 May 2016
1