Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.06398
Cited By
Stochastic Variance Reduction Methods for Saddle-Point Problems
20 May 2016
B. Palaniappan
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variance Reduction Methods for Saddle-Point Problems"
31 / 31 papers shown
Title
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Colin Dirren
Mattia Bianchi
Panagiotis D. Grontas
John Lygeros
Florian Dorfler
36
0
0
18 Oct 2024
Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
Minheng Xiao
Shi Bo
Zhizhong Wu
30
5
0
01 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
38
0
0
19 Jul 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
42
3
0
19 Mar 2024
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
39
14
0
25 May 2023
Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems
Jérôme Bolte
Edouard Pauwels
Antonio Silveti-Falls
18
13
0
15 Dec 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
32
2
0
12 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
39
31
0
29 Aug 2022
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
33
178
0
28 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
47
0
15 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
35
34
0
06 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
18
7
0
01 Feb 2022
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
33
61
0
29 Mar 2021
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Z. Luo
33
97
0
29 Oct 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
31
50
0
08 Jul 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
15
75
0
09 Apr 2020
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
23
83
0
22 Feb 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
33
48
0
02 Jan 2020
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
59
30
0
31 Oct 2019
Linear Lower Bounds and Conditioning of Differentiable Games
Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
23
10
0
17 Jun 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
25
134
0
18 Apr 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
19
324
0
24 Jan 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
15
112
0
11 Dec 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
13
174
0
14 Jun 2018
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization
Hoi-To Wai
Zhuoran Yang
Zhaoran Wang
Mingyi Hong
22
169
0
03 Jun 2018
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
55
120
0
05 Feb 2018
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
27
184
0
15 Jun 2017
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
Convex Sparse Matrix Factorizations
Francis R. Bach
Julien Mairal
Jean Ponce
137
143
0
10 Dec 2008
1