Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.02026
Cited By
Training Neural Networks Without Gradients: A Scalable ADMM Approach
6 May 2016
Gavin Taylor
R. Burmeister
Zheng Xu
Bharat Singh
Ankit B. Patel
Tom Goldstein
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training Neural Networks Without Gradients: A Scalable ADMM Approach"
46 / 46 papers shown
Title
ADMM-Based Training for Spiking Neural Networks
Giovanni Perin
Cesare Bidini
Riccardo Mazzieri
M. Rossi
34
0
0
08 May 2025
Occlusion-Aware Contingency Safety-Critical Planning for Autonomous Vehicles
Lei Zheng
Rui Yang
Minzhe Zheng
Zengqi Peng
Michael Yu Wang
Jun Ma
48
1
0
10 Feb 2025
BADM: Batch ADMM for Deep Learning
Ouya Wang
Shenglong Zhou
Geoffrey Ye Li
ODL
50
1
0
30 Jun 2024
PRIEST: Projection Guided Sampling-Based Optimization For Autonomous Navigation
Fatemeh Rastgar
Houman Masnavi
Basant Sharma
A. Aabloo
Jan Swevers
Ashutosh Kumar Singh
36
4
0
15 Sep 2023
On Model Compression for Neural Networks: Framework, Algorithm, and Convergence Guarantee
Chenyang Li
Jihoon Chung
Mengnan Du
Haimin Wang
Xianlian Zhou
Bohao Shen
33
1
0
13 Mar 2023
Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic Neurons
R. Høier
D. Staudt
Christopher Zach
31
11
0
02 Feb 2023
Deep Incubation: Training Large Models by Divide-and-Conquering
Zanlin Ni
Yulin Wang
Jiangwei Yu
Haojun Jiang
Yu Cao
Gao Huang
VLM
18
11
0
08 Dec 2022
Distributed Semi-supervised Fuzzy Regression with Interpolation Consistency Regularization
Ye-ling Shi
Leijie Zhang
Zehong Cao
M. Tanveer
Chin-Teng Lin
14
7
0
18 Sep 2022
Convergence Rates of Training Deep Neural Networks via Alternating Minimization Methods
Jintao Xu
Chenglong Bao
W. Xing
8
3
0
30 Aug 2022
Learning with Local Gradients at the Edge
M. Lomnitz
Z. Daniels
David C. Zhang
M. Piacentino
34
1
0
17 Aug 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
43
23
0
28 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
27
34
0
20 Jan 2022
Training Recurrent Neural Networks by Sequential Least Squares and the Alternating Direction Method of Multipliers
Alberto Bemporad
27
11
0
31 Dec 2021
Personalized On-Device E-health Analytics with Decentralized Block Coordinate Descent
Guanhua Ye
Hongzhi Yin
Tong Chen
Miao Xu
Quoc Viet Hung Nguyen
Jiangning Song
41
9
0
17 Dec 2021
Target Propagation via Regularized Inversion
Vincent Roulet
Zaïd Harchaoui
BDL
AAML
27
4
0
02 Dec 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Multi-Modal Model Predictive Control through Batch Non-Holonomic Trajectory Optimization: Application to Highway Driving
V. K. Adajania
Aditya Sharma
Anish Gupta
Houman Masnavi
M. Krishna
A. K. Singh
68
26
0
21 Sep 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
Stochastic Block-ADMM for Training Deep Networks
Saeed Khorram
Xiao Fu
Mohamad H. Danesh
Zhongang Qi
Li Fuxin
34
3
0
01 May 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
38
3
0
09 Jan 2021
Differentiable Programming à la Moreau
Vincent Roulet
Zaïd Harchaoui
23
5
0
31 Dec 2020
Deep Convolutional Transform Learning -- Extended version
Jyoti Maggu
A. Majumdar
Émilie Chouzenoux
Giovanni Chierchia
16
5
0
02 Oct 2020
Learning and Optimization of Blackbox Combinatorial Solvers in Neural Networks
T. J. Wilder
11
0
0
06 Jun 2020
Large-Scale Gradient-Free Deep Learning with Recursive Local Representation Alignment
Alexander Ororbia
A. Mali
Daniel Kifer
C. Lee Giles
23
2
0
10 Feb 2020
Fast Polynomial Kernel Classification for Massive Data
Jinshan Zeng
Minrun Wu
Shao-Bo Lin
Ding-Xuan Zhou
TPM
16
5
0
24 Nov 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
Inertial nonconvex alternating minimizations for the image deblurring
Tao Sun
R. Barrio
Marcos Rodríguez
Hao Jiang
16
12
0
27 Jul 2019
Associated Learning: Decomposing End-to-end Backpropagation based on Auto-encoders and Target Propagation
Yu-Wei Kao
Hung-Hsuan Chen
BDL
20
5
0
13 Jun 2019
Decoupled Greedy Learning of CNNs
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
8
114
0
23 Jan 2019
Differentially Private ADMM for Distributed Medical Machine Learning
Jiahao Ding
Xiaoqi Qin
Wenjun Xu
Yanmin Gong
Zhu Han
Miao Pan
FedML
32
20
0
07 Jan 2019
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
21
40
0
19 Nov 2018
Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks
Nikola B. Kovachki
Andrew M. Stuart
BDL
42
136
0
10 Aug 2018
Beyond Backprop: Online Alternating Minimization with Auxiliary Variables
A. Choromańska
Benjamin Cowen
Yara Rizk
Ronny Luss
Mattia Rigotti
...
Brian Kingsbury
Paolo Diachille
V. Gurev
Ravi Tejwani
Djallel Bouneffouf
21
52
0
24 Jun 2018
Local Critic Training of Deep Neural Networks
Hojung Lee
Jong-Seok Lee
33
8
0
03 May 2018
Decoupled Parallel Backpropagation with Convergence Guarantee
Zhouyuan Huo
Bin Gu
Qian Yang
Heng-Chiao Huang
23
97
0
27 Apr 2018
Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision
Sathya Ravi
Tuan Dinh
Vishnu Suresh Lokhande
Vikas Singh
AI4CE
33
22
0
17 Mar 2018
Deep Component Analysis via Alternating Direction Neural Networks
Calvin Murdock
Ming-Fang Chang
Simon Lucey
BDL
27
20
0
16 Mar 2018
Global Convergence of Block Coordinate Descent in Deep Learning
Jinshan Zeng
Tim Tsz-Kit Lau
Shaobo Lin
Yuan Yao
22
77
0
01 Mar 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
703
0
26 Feb 2018
Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
Ziming Zhang
M. Brand
26
70
0
20 Nov 2017
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
43
6
0
20 Nov 2017
Deep Learning as a Mixed Convex-Combinatorial Optimization Problem
A. Friesen
Pedro M. Domingos
26
20
0
31 Oct 2017
Proximal Backpropagation
Thomas Frerix
Thomas Möllenhoff
Michael Möller
Daniel Cremers
23
31
0
14 Jun 2017
A Probabilistic Framework for Deep Learning
Ankit B. Patel
M. T. Nguyen
Richard G. Baraniuk
BDL
31
67
0
06 Dec 2016
Decoupled Neural Interfaces using Synthetic Gradients
Max Jaderberg
Wojciech M. Czarnecki
Simon Osindero
Oriol Vinyals
Alex Graves
David Silver
Koray Kavukcuoglu
44
353
0
18 Aug 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1