ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.01636
  4. Cited By
Maximal Sparsity with Deep Networks?

Maximal Sparsity with Deep Networks?

5 May 2016
Bo Xin
Yizhou Wang
Wen Gao
David Wipf
    3DPC
ArXivPDFHTML

Papers citing "Maximal Sparsity with Deep Networks?"

40 / 40 papers shown
Title
Deep greedy unfolding: Sorting out argsorting in greedy sparse recovery algorithms
Deep greedy unfolding: Sorting out argsorting in greedy sparse recovery algorithms
Sina Mohammad-Taheri
Matthew J. Colbrook
Simone Brugiapaglia
16
0
0
21 May 2025
WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
Geoffrey Kasenbacher
Felix Ehret
Gerrit Ecke
Sebastian Otte
49
0
0
24 Oct 2024
SINET: Sparsity-driven Interpretable Neural Network for Underwater Image Enhancement
SINET: Sparsity-driven Interpretable Neural Network for Underwater Image Enhancement
Gargi Panda
Soumitra Kundu
Saumik Bhattacharya
Aurobinda Routray
43
0
0
02 Sep 2024
TpopT: Efficient Trainable Template Optimization on Low-Dimensional
  Manifolds
TpopT: Efficient Trainable Template Optimization on Low-Dimensional Manifolds
Jingkai Yan
Shiyu Wang
Xinyu Rain Wei
Jimmy Wang
Z. Márka
S. Márka
John N. Wright
29
1
0
16 Oct 2023
Hybrid ISTA: Unfolding ISTA With Convergence Guarantees Using Free-Form
  Deep Neural Networks
Hybrid ISTA: Unfolding ISTA With Convergence Guarantees Using Free-Form Deep Neural Networks
Ziyang Zheng
Wenrui Dai
Duoduo Xue
Chenglin Li
Junni Zou
H. Xiong
44
17
0
25 Apr 2022
Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
  as Neural Networks
Generalization Error Bounds for Iterative Recovery Algorithms Unfolded as Neural Networks
Ekkehard Schnoor
Arash Behboodi
Holger Rauhut
24
13
0
08 Dec 2021
Hyperparameter Tuning is All You Need for LISTA
Hyperparameter Tuning is All You Need for LISTA
Xiaohan Chen
Jialin Liu
Zhangyang Wang
W. Yin
ODL
30
23
0
29 Oct 2021
Learned Robust PCA: A Scalable Deep Unfolding Approach for
  High-Dimensional Outlier Detection
Learned Robust PCA: A Scalable Deep Unfolding Approach for High-Dimensional Outlier Detection
HanQin Cai
Jialin Liu
W. Yin
41
39
0
11 Oct 2021
Deep Algorithm Unrolling for Biomedical Imaging
Deep Algorithm Unrolling for Biomedical Imaging
Yuelong Li
Or Bar-Shira
V. Monga
Yonina C. Eldar
SyDa
36
10
0
15 Aug 2021
Sparse Bayesian Learning via Stepwise Regression
Sparse Bayesian Learning via Stepwise Regression
Sebastian Ament
Carla P. Gomes
16
5
0
11 Jun 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
61
225
0
23 Mar 2021
Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
  Learning Approach With Adaptive Depth
Solving Sparse Linear Inverse Problems in Communication Systems: A Deep Learning Approach With Adaptive Depth
Wei Chen
Bowen Zhang
Shimei Jin
B. Ai
Z. Zhong
10
24
0
29 Oct 2020
Convergence Acceleration via Chebyshev Step: Plausible Interpretation of
  Deep-Unfolded Gradient Descent
Convergence Acceleration via Chebyshev Step: Plausible Interpretation of Deep-Unfolded Gradient Descent
Satoshi Takabe
T. Wadayama
23
10
0
26 Oct 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
61
23
0
22 Jul 2020
When and How Can Deep Generative Models be Inverted?
When and How Can Deep Generative Models be Inverted?
Aviad Aberdam
Dror Simon
Michael Elad
21
13
0
28 Jun 2020
Safeguarded Learned Convex Optimization
Safeguarded Learned Convex Optimization
Howard Heaton
Xiaohan Chen
Zhangyang Wang
W. Yin
24
22
0
04 Mar 2020
Ada-LISTA: Learned Solvers Adaptive to Varying Models
Ada-LISTA: Learned Solvers Adaptive to Varying Models
Aviad Aberdam
Alona Golts
Michael Elad
27
40
0
23 Jan 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
46
1,002
0
22 Dec 2019
Multimodal Image Super-resolution via Deep Unfolding with Side
  Information
Multimodal Image Super-resolution via Deep Unfolding with Side Information
Iman Marivani
Evaggelia Tsiligianni
Bruno Cornelis
Nikos Deligiannis
SupR
32
17
0
18 Oct 2019
Learned-SBL: A Deep Learning Architecture for Sparse Signal Recovery
Learned-SBL: A Deep Learning Architecture for Sparse Signal Recovery
Rubin Jose Peter
C. Murthy
18
4
0
17 Sep 2019
Data-driven Estimation of Sinusoid Frequencies
Data-driven Estimation of Sinusoid Frequencies
Gautier Izacard
S. Mohan
C. Fernandez‐Granda
16
51
0
03 Jun 2019
Learning step sizes for unfolded sparse coding
Learning step sizes for unfolded sparse coding
Pierre Ablin
Thomas Moreau
Mathurin Massias
Alexandre Gramfort
MQ
27
51
0
27 May 2019
Tree Search Network for Sparse Regression
Tree Search Network for Sparse Regression
Kyung-Su Kim
Sae-Young Chung
17
1
0
01 Apr 2019
Designing recurrent neural networks by unfolding an l1-l1 minimization
  algorithm
Designing recurrent neural networks by unfolding an l1-l1 minimization algorithm
Hung Duy Le
Huynh Van Luong
Nikos Deligiannis
15
15
0
18 Feb 2019
Regularization by architecture: A deep prior approach for inverse
  problems
Regularization by architecture: A deep prior approach for inverse problems
Sören Dittmer
T. Kluth
Peter Maass
Daniel Otero Baguer
35
97
0
10 Dec 2018
A Learning-Based Framework for Line-Spectra Super-resolution
A Learning-Based Framework for Line-Spectra Super-resolution
Gautier Izacard
B. Bernstein
C. Fernandez‐Granda
18
34
0
14 Nov 2018
Physics-based Learned Design: Optimized Coded-Illumination for
  Quantitative Phase Imaging
Physics-based Learned Design: Optimized Coded-Illumination for Quantitative Phase Imaging
Michael R. Kellman
E. Bostan
N. Repina
Laura Waller
17
125
0
10 Aug 2018
Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian
  Process Priors
Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian Process Priors
Danil Kuzin
Olga Isupova
Lyudmila Mihaylova
28
8
0
15 Jul 2018
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Shanshan Wu
A. Dimakis
Sujay Sanghavi
Felix X. Yu
D. Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
SSL
23
53
0
26 Jun 2018
Random mesh projectors for inverse problems
Random mesh projectors for inverse problems
Sidharth Gupta
K. Kothari
Maarten V. de Hoop
Ivan Dokmanić
29
15
0
29 May 2018
Neural Inverse Rendering for General Reflectance Photometric Stereo
Neural Inverse Rendering for General Reflectance Photometric Stereo
Tatsunori Taniai
Takanori Maehara
30
103
0
28 Feb 2018
Frank-Wolfe Network: An Interpretable Deep Structure for Non-Sparse
  Coding
Frank-Wolfe Network: An Interpretable Deep Structure for Non-Sparse Coding
Dong Liu
Ke Sun
Zhangyang Wang
Runsheng Liu
Zhengjun Zha
24
12
0
28 Feb 2018
Denoising Prior Driven Deep Neural Network for Image Restoration
Denoising Prior Driven Deep Neural Network for Image Restoration
W. Dong
Peiyao Wang
W. Yin
Guangming Shi
Fangfang Wu
Xiaotong Lu
SupR
39
417
0
21 Jan 2018
Deep Convolutional Framelets: A General Deep Learning Framework for
  Inverse Problems
Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems
J. C. Ye
Yoseob Han
Eunju Cha
36
16
0
03 Jul 2017
ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI
ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI
Yan Yang
Jian Sun
Huibin Li
Zongben Xu
MedIm
32
126
0
19 May 2017
Deep Convolutional Neural Network for Inverse Problems in Imaging
Deep Convolutional Neural Network for Inverse Problems in Imaging
Kyong Hwan Jin
Michael T. McCann
Emmanuel Froustey
M. Unser
15
2,104
0
11 Nov 2016
Understanding Trainable Sparse Coding via Matrix Factorization
Understanding Trainable Sparse Coding via Matrix Factorization
Thomas Moreau
Joan Bruna
18
44
0
01 Sep 2016
Stacked Approximated Regression Machine: A Simple Deep Learning Approach
Stacked Approximated Regression Machine: A Simple Deep Learning Approach
Zhangyang Wang
Shiyu Chang
Qing Ling
Shuai Huang
Xia Hu
Honghui Shi
Thomas S. Huang
BDL
15
2
0
14 Aug 2016
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Vardan Papyan
Yaniv Romano
Michael Elad
59
284
0
27 Jul 2016
Tradeoffs between Convergence Speed and Reconstruction Accuracy in
  Inverse Problems
Tradeoffs between Convergence Speed and Reconstruction Accuracy in Inverse Problems
Raja Giryes
Yonina C. Eldar
A. Bronstein
Guillermo Sapiro
17
85
0
30 May 2016
1