Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.01559
Cited By
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
5 May 2016
Alain Durmus
Eric Moulines
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm"
50 / 70 papers shown
Title
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
62
0
0
08 May 2025
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
31
0
0
05 May 2025
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
110
0
0
11 Apr 2025
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
T. Pock
55
0
0
03 Feb 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
82
3
0
28 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
35
2
0
13 Oct 2024
On high-dimensional classification by sparse generalized Bayesian logistic regression
The Tien Mai
46
1
0
19 Mar 2024
Nearly
d
d
d
-Linear Convergence Bounds for Diffusion Models via Stochastic Localization
Joe Benton
Valentin De Bortoli
Arnaud Doucet
George Deligiannidis
DiffM
41
101
0
07 Aug 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
23
5
0
14 Jun 2023
Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning
Shuxin Zheng
Jiyan He
Chang-Shu Liu
Yu Shi
Ziheng Lu
...
Peiran Jin
Chi Chen
Frank Noé
Haiguang Liu
Tie-Yan Liu
AI4CE
19
41
0
08 Jun 2023
When does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm?
Yuansi Chen
Khashayar Gatmiry
94
15
0
10 Apr 2023
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
25
10
0
23 Mar 2023
Non-asymptotic analysis of Langevin-type Monte Carlo algorithms
Shogo H. Nakakita
19
0
0
22 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
26
6
0
08 Mar 2023
Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics
B. Leimkuhler
Daniel Paulin
P. Whalley
32
16
0
21 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
17
7
0
13 Feb 2023
Non-convex sampling for a mixture of locally smooth potentials
D. Nguyen
33
0
0
31 Jan 2023
Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions
Marelys Crespo Navas
S. Gadat
X. Gendre
24
0
0
08 Jan 2023
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
32
12
0
20 Nov 2022
Jump-Diffusion Langevin Dynamics for Multimodal Posterior Sampling
Jacopo Guidolin
Vyacheslav Kungurtsev
Ondvrej Kuvzelka
BDL
16
0
0
02 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
Gaussian-Bernoulli RBMs Without Tears
Renjie Liao
Simon Kornblith
Mengye Ren
David J. Fleet
Geoffrey E. Hinton
BDL
OOD
8
12
0
19 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
27
24
0
16 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
46
15
0
05 Oct 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
21
19
0
01 Jun 2022
Optimized Population Monte Carlo
Victor Elvira
Émilie Chouzenoux
24
23
0
14 Apr 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
18
14
0
26 Feb 2022
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
20
10
0
02 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
27
16
0
09 Dec 2021
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
17
8
0
06 Dec 2021
Statistical Finite Elements via Langevin Dynamics
Ömer Deniz Akyildiz
Connor Duffin
Sotirios Sabanis
Mark Girolami
25
11
0
21 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
37
16
0
05 Oct 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
24
19
0
02 Aug 2021
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics
Alain Durmus
Aurélien Enfroy
Eric Moulines
G. Stoltz
22
17
0
30 Jul 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
51
4
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
29
27
0
21 Jun 2021
On log-concave approximations of high-dimensional posterior measures and stability properties in non-linear inverse problems
Jan Bohr
Richard Nickl
8
17
0
17 May 2021
Discrete sticky couplings of functional autoregressive processes
Alain Durmus
A. Eberle
Aurélien Enfroy
Arnaud Guillin
Pierre Monmarché
11
7
0
14 Apr 2021
Data-Free Likelihood-Informed Dimension Reduction of Bayesian Inverse Problems
Tiangang Cui
O. Zahm
20
22
0
26 Feb 2021
On the cost of Bayesian posterior mean strategy for log-concave models
S. Gadat
Fabien Panloup
Clément Pellegrini
18
7
0
08 Oct 2020
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Murat A. Erdogdu
Rasa Hosseinzadeh
Matthew Shunshi Zhang
86
41
0
22 Jul 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
15
25
0
25 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
A. Gretton
13
76
0
17 Jun 2020
On the limitations of single-step drift and minorization in Markov chain convergence analysis
Qian Qin
J. Hobert
12
29
0
21 Mar 2020
Central limit theorems for Markov chains based on their convergence rates in Wasserstein distance
Rui Jin
Aixin Tan
23
6
0
21 Feb 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
35
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
16
65
0
11 Feb 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
19
37
0
10 Feb 2020
1
2
Next