Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.00751
Cited By
Learning from Binary Labels with Instance-Dependent Corruption
3 May 2016
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning from Binary Labels with Instance-Dependent Corruption"
22 / 22 papers shown
Title
Meta Self-Refinement for Robust Learning with Weak Supervision
D. Zhu
Xiaoyu Shen
Michael A. Hedderich
Dietrich Klakow
NoLa
34
7
0
15 May 2022
The Weak Supervision Landscape
Rafael Poyiadzi
Daniel Bacaicoa-Barber
Jesús Cid-Sueiro
Miquel Perelló Nieto
Peter A. Flach
Raúl Santos-Rodríguez
19
5
0
30 Mar 2022
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
35
15
0
29 Nov 2021
Binary classification with corrupted labels
Yonghoon Lee
Rina Foygel Barber
34
9
0
16 Jun 2021
Technical Report -- Expected Exploitability: Predicting the Development of Functional Vulnerability Exploits
Octavian Suciu
Connor Nelson
Zhuo Lyu
Tiffany Bao
Tudor Dumitras
8
36
0
15 Feb 2021
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model
Qizhou Wang
Bo Han
Tongliang Liu
Gang Niu
Jian Yang
Chen Gong
NoLa
25
26
0
14 Jan 2021
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
159
0
09 Nov 2020
Importance Reweighting for Biquality Learning
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
NoLa
27
6
0
19 Oct 2020
Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization
Kaidi Cao
Yining Chen
Junwei Lu
Nikos Arechiga
Adrien Gaidon
Tengyu Ma
28
68
0
29 Jun 2020
Learning from Noisy Similar and Dissimilar Data
Soham Dan
Han Bao
Masashi Sugiyama
NoLa
8
7
0
03 Feb 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
40
104
0
11 Jan 2020
Lead2Gold: Towards exploiting the full potential of noisy transcriptions for speech recognition
Adrien Dufraux
Emmanuel Vincent
Awni Y. Hannun
Armelle Brun
Matthijs Douze
6
9
0
16 Oct 2019
A Simple yet Effective Baseline for Robust Deep Learning with Noisy Labels
Yucen Luo
Jun Zhu
Tomas Pfister
NoLa
23
6
0
20 Sep 2019
L_DMI: An Information-theoretic Noise-robust Loss Function
Yilun Xu
Peng Cao
Yuqing Kong
Yizhou Wang
NoLa
19
57
0
08 Sep 2019
Learning with Bad Training Data via Iterative Trimmed Loss Minimization
Yanyao Shen
Sujay Sanghavi
FedML
17
4
0
28 Oct 2018
On the Minimal Supervision for Training Any Binary Classifier from Only Unlabeled Data
Nan Lu
Gang Niu
A. Menon
Masashi Sugiyama
MQ
30
86
0
31 Aug 2018
Classification with imperfect training labels
T. Cannings
Yingying Fan
R. Samworth
17
45
0
29 May 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
68
547
0
14 Feb 2018
Decontamination of Mutual Contamination Models
Julian Katz-Samuels
Gilles Blanchard
Clayton Scott
69
24
0
30 Sep 2017
Learning with Bounded Instance- and Label-dependent Label Noise
Jiacheng Cheng
Tongliang Liu
K. Ramamohanarao
Dacheng Tao
NoLa
43
147
0
12 Sep 2017
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
20
563
0
08 Jun 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Lizhen Qu
NoLa
51
1,435
0
13 Sep 2016
1