ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.00751
  4. Cited By
Learning from Binary Labels with Instance-Dependent Corruption

Learning from Binary Labels with Instance-Dependent Corruption

3 May 2016
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
    NoLa
ArXivPDFHTML

Papers citing "Learning from Binary Labels with Instance-Dependent Corruption"

22 / 22 papers shown
Title
Meta Self-Refinement for Robust Learning with Weak Supervision
Meta Self-Refinement for Robust Learning with Weak Supervision
D. Zhu
Xiaoyu Shen
Michael A. Hedderich
Dietrich Klakow
NoLa
32
7
0
15 May 2022
The Weak Supervision Landscape
The Weak Supervision Landscape
Rafael Poyiadzi
Daniel Bacaicoa-Barber
Jesús Cid-Sueiro
Miquel Perelló Nieto
Peter A. Flach
Raúl Santos-Rodríguez
14
5
0
30 Mar 2022
Learning with Noisy Labels by Efficient Transition Matrix Estimation to
  Combat Label Miscorrection
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
35
15
0
29 Nov 2021
Binary classification with corrupted labels
Binary classification with corrupted labels
Yonghoon Lee
Rina Foygel Barber
29
9
0
16 Jun 2021
Technical Report -- Expected Exploitability: Predicting the Development
  of Functional Vulnerability Exploits
Technical Report -- Expected Exploitability: Predicting the Development of Functional Vulnerability Exploits
Octavian Suciu
Connor Nelson
Zhuo Lyu
Tiffany Bao
Tudor Dumitras
8
36
0
15 Feb 2021
Tackling Instance-Dependent Label Noise via a Universal Probabilistic
  Model
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model
Qizhou Wang
Bo Han
Tongliang Liu
Gang Niu
Jian Yang
Chen Gong
NoLa
25
26
0
14 Jan 2021
A Survey of Label-noise Representation Learning: Past, Present and
  Future
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
159
0
09 Nov 2020
Importance Reweighting for Biquality Learning
Importance Reweighting for Biquality Learning
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
NoLa
27
6
0
19 Oct 2020
Heteroskedastic and Imbalanced Deep Learning with Adaptive
  Regularization
Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization
Kaidi Cao
Yining Chen
Junwei Lu
Nikos Arechiga
Adrien Gaidon
Tengyu Ma
28
68
0
29 Jun 2020
Learning from Noisy Similar and Dissimilar Data
Learning from Noisy Similar and Dissimilar Data
Soham Dan
Han Bao
Masashi Sugiyama
NoLa
6
7
0
03 Feb 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
40
104
0
11 Jan 2020
Lead2Gold: Towards exploiting the full potential of noisy transcriptions
  for speech recognition
Lead2Gold: Towards exploiting the full potential of noisy transcriptions for speech recognition
Adrien Dufraux
Emmanuel Vincent
Awni Y. Hannun
Armelle Brun
Matthijs Douze
6
9
0
16 Oct 2019
A Simple yet Effective Baseline for Robust Deep Learning with Noisy
  Labels
A Simple yet Effective Baseline for Robust Deep Learning with Noisy Labels
Yucen Luo
Jun Zhu
Tomas Pfister
NoLa
18
6
0
20 Sep 2019
L_DMI: An Information-theoretic Noise-robust Loss Function
L_DMI: An Information-theoretic Noise-robust Loss Function
Yilun Xu
Peng Cao
Yuqing Kong
Yizhou Wang
NoLa
19
57
0
08 Sep 2019
Learning with Bad Training Data via Iterative Trimmed Loss Minimization
Learning with Bad Training Data via Iterative Trimmed Loss Minimization
Yanyao Shen
Sujay Sanghavi
FedML
17
4
0
28 Oct 2018
On the Minimal Supervision for Training Any Binary Classifier from Only
  Unlabeled Data
On the Minimal Supervision for Training Any Binary Classifier from Only Unlabeled Data
Nan Lu
Gang Niu
A. Menon
Masashi Sugiyama
MQ
30
86
0
31 Aug 2018
Classification with imperfect training labels
Classification with imperfect training labels
T. Cannings
Yingying Fan
R. Samworth
12
45
0
29 May 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe
  Noise
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
47
547
0
14 Feb 2018
Decontamination of Mutual Contamination Models
Decontamination of Mutual Contamination Models
Julian Katz-Samuels
Gilles Blanchard
Clayton Scott
66
24
0
30 Sep 2017
Learning with Bounded Instance- and Label-dependent Label Noise
Learning with Bounded Instance- and Label-dependent Label Noise
Jiacheng Cheng
Tongliang Liu
K. Ramamohanarao
Dacheng Tao
NoLa
43
147
0
12 Sep 2017
Decoupling "when to update" from "how to update"
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
20
563
0
08 Jun 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction
  Approach
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Lizhen Qu
NoLa
51
1,435
0
13 Sep 2016
1