ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.08201
  4. Cited By
Interpretable Deep Neural Networks for Single-Trial EEG Classification

Interpretable Deep Neural Networks for Single-Trial EEG Classification

27 April 2016
I. Sturm
Sebastian Bach
Wojciech Samek
K. Müller
ArXivPDFHTML

Papers citing "Interpretable Deep Neural Networks for Single-Trial EEG Classification"

36 / 36 papers shown
Title
An Interpretable and Attention-based Method for Gaze Estimation Using
  Electroencephalography
An Interpretable and Attention-based Method for Gaze Estimation Using Electroencephalography
Nina Weng
M. Płomecka
Manuel Kaufmann
Ard Kastrati
Roger Wattenhofer
N. Langer
18
1
0
09 Aug 2023
Explainable AI for Time Series via Virtual Inspection Layers
Explainable AI for Time Series via Virtual Inspection Layers
Johanna Vielhaben
Sebastian Lapuschkin
G. Montavon
Wojciech Samek
XAI
AI4TS
18
25
0
11 Mar 2023
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
48
17
0
30 Dec 2022
Decoding Neural Signals with Computational Models: A Systematic Review of Invasive BMI
Rezwan Firuzi
Hamed Ahmadyani
Mohammad Foad Abdi
Dana Naderi
Jahanfar Hassan
Ayub Bokani
AI4CE
21
1
0
07 Nov 2022
Analysis of a Deep Learning Model for 12-Lead ECG Classification Reveals
  Learned Features Similar to Diagnostic Criteria
Analysis of a Deep Learning Model for 12-Lead ECG Classification Reveals Learned Features Similar to Diagnostic Criteria
Theresa Bender
J. Beinecke
D. Krefting
Carolin Müller
Henning Dathe
T. Seidler
Nicolai Spicher
Anne-Christin Hauschild
FAtt
16
25
0
03 Nov 2022
FingerFlex: Inferring Finger Trajectories from ECoG signals
FingerFlex: Inferring Finger Trajectories from ECoG signals
V. Lomtev
A. Kovalev
Alexey Timchenko
14
2
0
23 Oct 2022
A Simple Self-Supervised ECG Representation Learning Method via
  Manipulated Temporal-Spatial Reverse Detection
A Simple Self-Supervised ECG Representation Learning Method via Manipulated Temporal-Spatial Reverse Detection
Wen-Rang Zhang
Shijia Geng
linda Qiao
16
29
0
25 Feb 2022
Explainability: Relevance based Dynamic Deep Learning Algorithm for
  Fault Detection and Diagnosis in Chemical Processes
Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes
P. Agarwal
Melih Tamer
H. Budman
AAML
11
43
0
22 Mar 2021
Interpretable Deep Learning for the Remote Characterisation of
  Ambulation in Multiple Sclerosis using Smartphones
Interpretable Deep Learning for the Remote Characterisation of Ambulation in Multiple Sclerosis using Smartphones
Andrew P. Creagh
F. Lipsmeier
M. Lindemann
M. D. Vos
24
17
0
16 Mar 2021
GANterfactual - Counterfactual Explanations for Medical Non-Experts
  using Generative Adversarial Learning
GANterfactual - Counterfactual Explanations for Medical Non-Experts using Generative Adversarial Learning
Silvan Mertes
Tobias Huber
Katharina Weitz
Alexander Heimerl
Elisabeth André
GAN
AAML
MedIm
31
69
0
22 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
It's All in the Name: A Character Based Approach To Infer Religion
It's All in the Name: A Character Based Approach To Infer Religion
Rochana Chaturvedi
Sugat Chaturvedi
21
23
0
27 Oct 2020
OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page
  Text Recognition by learning to unfold
OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page Text Recognition by learning to unfold
Mohamed Yousef
Tom E. Bishop
AI4TS
21
81
0
12 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Machine-Learning-Based Diagnostics of EEG Pathology
Machine-Learning-Based Diagnostics of EEG Pathology
Lukas A. W. Gemein
R. Schirrmeister
P. Chrabaszcz
Daniel Wilson
Joschka Boedecker
A. Schulze-Bonhage
Frank Hutter
T. Ball
22
153
0
11 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
13
132
0
20 Dec 2019
Towards Best Practice in Explaining Neural Network Decisions with LRP
Towards Best Practice in Explaining Neural Network Decisions with LRP
M. Kohlbrenner
Alexander Bauer
Shinichi Nakajima
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
22
148
0
22 Oct 2019
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining and Interpreting LSTMs
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAtt
AI4TS
21
79
0
25 Sep 2019
Robust and Resource Efficient Identification of Two Hidden Layer Neural
  Networks
Robust and Resource Efficient Identification of Two Hidden Layer Neural Networks
M. Fornasier
T. Klock
Michael Rauchensteiner
19
17
0
30 Jun 2019
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization
  Simulation
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation
Subhashis Hazarika
Haoyu Li
Ko-Chih Wang
Han-Wei Shen
Ching-Shan Chou
31
20
0
19 Apr 2019
Deep learning in bioinformatics: introduction, application, and
  perspective in big data era
Deep learning in bioinformatics: introduction, application, and perspective in big data era
Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
AI4CE
21
295
0
28 Feb 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
Fusion Strategies for Learning User Embeddings with Neural Networks
Fusion Strategies for Learning User Embeddings with Neural Networks
Philipp Blandfort
Tushar Karayil
Federico Raue
Jörn Hees
Andreas Dengel
FedML
24
9
0
08 Jan 2019
An Overview of Computational Approaches for Interpretation Analysis
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
21
2
0
09 Nov 2018
Explaining the Unique Nature of Individual Gait Patterns with Deep
  Learning
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
Fabian Horst
Sebastian Lapuschkin
Wojciech Samek
K. Müller
W. Schöllhorn
AI4CE
25
207
0
13 Aug 2018
EEG-GAN: Generative adversarial networks for electroencephalograhic
  (EEG) brain signals
EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
K. Hartmann
R. Schirrmeister
T. Ball
GAN
AI4TS
22
229
0
05 Jun 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
42
96
0
16 May 2018
Bioinformatics and Medicine in the Era of Deep Learning
Bioinformatics and Medicine in the Era of Deep Learning
D. Bacciu
P. Lisboa
José D. Martín
R. Stoean
A. Vellido
AI4CE
BDL
33
17
0
27 Feb 2018
Hierarchical internal representation of spectral features in deep
  convolutional networks trained for EEG decoding
Hierarchical internal representation of spectral features in deep convolutional networks trained for EEG decoding
K. Hartmann
R. Schirrmeister
T. Ball
23
27
0
21 Nov 2017
Applications of Deep Learning and Reinforcement Learning to Biological
  Data
Applications of Deep Learning and Reinforcement Learning to Biological Data
M. S. M. Mahmud
M. S. Kaiser
Amir Hussain
S. Vassanelli
OffRL
AI4CE
41
641
0
10 Nov 2017
Unsupervised Machine Learning for Networking: Techniques, Applications
  and Research Challenges
Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
Muhammad Usama
Junaid Qadir
Aunn Raza
Hunain Arif
K. Yau
Y. Elkhatib
Amir Hussain
Ala I. Al-Fuqaha
SSL
25
315
0
19 Sep 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Interpreting the Predictions of Complex ML Models by Layer-wise
  Relevance Propagation
Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation
Wojciech Samek
G. Montavon
Alexander Binder
Sebastian Lapuschkin
K. Müller
FAtt
AI4CE
26
48
0
24 Nov 2016
Identifying individual facial expressions by deconstructing a neural
  network
Identifying individual facial expressions by deconstructing a neural network
F. Arbabzadah
G. Montavon
K. Müller
Wojciech Samek
CVBM
FAtt
27
31
0
23 Jun 2016
1