ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.08201
  4. Cited By
Interpretable Deep Neural Networks for Single-Trial EEG Classification

Interpretable Deep Neural Networks for Single-Trial EEG Classification

27 April 2016
I. Sturm
Sebastian Bach
Wojciech Samek
K. Müller
ArXiv (abs)PDFHTML

Papers citing "Interpretable Deep Neural Networks for Single-Trial EEG Classification"

50 / 57 papers shown
Title
Deep comparisons of Neural Networks from the EEGNet family
Deep comparisons of Neural Networks from the EEGNet family
C. Köllod
A. Adolf
G. Márton
I. Ulbert
OOD
23
20
0
17 Feb 2023
FATE in AI: Towards Algorithmic Inclusivity and Accessibility
FATE in AI: Towards Algorithmic Inclusivity and Accessibility
Isa Inuwa-Dutse
58
9
0
03 Jan 2023
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
120
20
0
30 Dec 2022
Deep Learning for Size and Microscope Feature Extraction and
  Classification in Oral Cancer: Enhanced Convolution Neural Network
Deep Learning for Size and Microscope Feature Extraction and Classification in Oral Cancer: Enhanced Convolution Neural Network
Prakrit Joshi
O. H. Alsadoon
Abeer Alsadoon
Nada AlSallami
Tarik Ahmed Rashid
P. Prasad
Sami Haddad
24
7
0
06 Aug 2022
Core-set Selection Using Metrics-based Explanations (CSUME) for
  multiclass ECG
Core-set Selection Using Metrics-based Explanations (CSUME) for multiclass ECG
Sagnik Dakshit
B. M. Maweu
Sristi Dakshit
Balakrishnan Prabhakaran
13
5
0
28 May 2022
A Simple Self-Supervised ECG Representation Learning Method via
  Manipulated Temporal-Spatial Reverse Detection
A Simple Self-Supervised ECG Representation Learning Method via Manipulated Temporal-Spatial Reverse Detection
Wen-Rang Zhang
Shijia Geng
linda Qiao
60
29
0
25 Feb 2022
Interpretable Convolutional Neural Networks for Subject-Independent
  Motor Imagery Classification
Interpretable Convolutional Neural Networks for Subject-Independent Motor Imagery Classification
Ji-Seon Bang
Seong-Whan Lee
21
7
0
14 Dec 2021
Explainability: Relevance based Dynamic Deep Learning Algorithm for
  Fault Detection and Diagnosis in Chemical Processes
Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes
P. Agarwal
Melih Tamer
H. Budman
AAML
47
44
0
22 Mar 2021
Interpretable Deep Learning for the Remote Characterisation of
  Ambulation in Multiple Sclerosis using Smartphones
Interpretable Deep Learning for the Remote Characterisation of Ambulation in Multiple Sclerosis using Smartphones
Andrew P. Creagh
F. Lipsmeier
M. Lindemann
M. D. Vos
105
17
0
16 Mar 2021
Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
  signals
Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG signals
Valentin Gabeff
T. Teijeiro
Marina Zapater
L. Cammoun
S. Rheims
P. Ryvlin
David Atienza Alonso
38
59
0
22 Dec 2020
GANterfactual - Counterfactual Explanations for Medical Non-Experts
  using Generative Adversarial Learning
GANterfactual - Counterfactual Explanations for Medical Non-Experts using Generative Adversarial Learning
Silvan Mertes
Tobias Huber
Katharina Weitz
Alexander Heimerl
Elisabeth André
GANAAMLMedIm
104
74
0
22 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
90
64
0
18 Dec 2020
It's All in the Name: A Character Based Approach To Infer Religion
It's All in the Name: A Character Based Approach To Infer Religion
Rochana Chaturvedi
Sugat Chaturvedi
65
23
0
27 Oct 2020
Understanding Information Processing in Human Brain by Interpreting
  Machine Learning Models
Understanding Information Processing in Human Brain by Interpreting Machine Learning Models
Ilya Kuzovkin
HAI
24
2
0
17 Oct 2020
Staging Epileptogenesis with Deep Neural Networks
Staging Epileptogenesis with Deep Neural Networks
D. Lu
S. Bauer
V. Neubert
L. Costard
F. Rosenow
Jochen Triesch
34
6
0
17 Jun 2020
OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page
  Text Recognition by learning to unfold
OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page Text Recognition by learning to unfold
Mohamed Yousef
Tom E. Bishop
AI4TS
94
82
0
12 Jun 2020
Explainable Artificial Intelligence: a Systematic Review
Explainable Artificial Intelligence: a Systematic Review
Giulia Vilone
Luca Longo
XAI
110
271
0
29 May 2020
Sequential Interpretability: Methods, Applications, and Future Direction
  for Understanding Deep Learning Models in the Context of Sequential Data
Sequential Interpretability: Methods, Applications, and Future Direction for Understanding Deep Learning Models in the Context of Sequential Data
B. Shickel
Parisa Rashidi
AI4TS
61
17
0
27 Apr 2020
MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based
  Sleep Stage Classifier to New Individual Subject Using Meta-Learning
MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based Sleep Stage Classifier to New Individual Subject Using Meta-Learning
Nannapas Banluesombatkul
Pichayoot Ouppaphan
Pitshaporn Leelaarporn
Payongkit Lakhan
Busarakum Chaitusaney
...
Ekapol Chuangsuwanich
Wei Chen
Huy Phan
Nat Dilokthanakul
Theerawit Wilaiprasitporn
90
1
0
08 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
141
83
0
17 Mar 2020
Machine-Learning-Based Diagnostics of EEG Pathology
Machine-Learning-Based Diagnostics of EEG Pathology
Lukas A. W. Gemein
R. Schirrmeister
P. Chrabaszcz
Daniel Wilson
Joschka Boedecker
A. Schulze-Bonhage
Frank Hutter
T. Ball
81
159
0
11 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAMLAI4CE
94
317
0
08 Jan 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDLFAttXAI
88
132
0
20 Dec 2019
Self Organizing Nebulous Growths for Robust and Incremental Data
  Visualization
Self Organizing Nebulous Growths for Robust and Incremental Data Visualization
Damith A. Senanayake
Wei Wang
S. Naik
Saman K. Halgamuge
AI4TS
43
16
0
09 Dec 2019
Analysis of Explainers of Black Box Deep Neural Networks for Computer
  Vision: A Survey
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
Vanessa Buhrmester
David Münch
Michael Arens
MLAUFaMLXAIAAML
112
367
0
27 Nov 2019
Towards Best Practice in Explaining Neural Network Decisions with LRP
Towards Best Practice in Explaining Neural Network Decisions with LRP
M. Kohlbrenner
Alexander Bauer
Shinichi Nakajima
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
103
150
0
22 Oct 2019
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
87
449
0
26 Sep 2019
Explaining and Interpreting LSTMs
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAttAI4TS
76
79
0
25 Sep 2019
Explaining Convolutional Neural Networks using Softmax Gradient
  Layer-wise Relevance Propagation
Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation
Brian Kenji Iwana
Ryohei Kuroki
S. Uchida
FAtt
72
98
0
06 Aug 2019
Robust and Resource Efficient Identification of Two Hidden Layer Neural
  Networks
Robust and Resource Efficient Identification of Two Hidden Layer Neural Networks
M. Fornasier
T. Klock
Michael Rauchensteiner
73
18
0
30 Jun 2019
A Survey on Deep Learning-based Non-Invasive Brain Signals:Recent
  Advances and New Frontiers
A Survey on Deep Learning-based Non-Invasive Brain Signals:Recent Advances and New Frontiers
Xiang Zhang
Lina Yao
Xianzhi Wang
Jessica J. M. Monaghan
David Mcalpine
Yu Zhang
3DV
69
140
0
10 May 2019
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization
  Simulation
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation
Subhashis Hazarika
Haoyu Li
Ko-Chih Wang
Han-Wei Shen
Ching-Shan Chou
91
20
0
19 Apr 2019
Deep learning in bioinformatics: introduction, application, and
  perspective in big data era
Deep learning in bioinformatics: introduction, application, and perspective in big data era
Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
AI4CE
96
302
0
28 Feb 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
106
1,022
0
26 Feb 2019
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of
  Key Ideas and Publications, and Bibliography for Explainable AI
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI
Shane T. Mueller
R. Hoffman
W. Clancey
Abigail Emrey
Gary Klein
XAI
76
285
0
05 Feb 2019
Deep learning-based electroencephalography analysis: a systematic review
Deep learning-based electroencephalography analysis: a systematic review
Yannick Roy
Hubert J. Banville
Isabela Albuquerque
Alexandre Gramfort
T. Falk
J. Faubert
144
976
0
16 Jan 2019
A General End-to-end Diagnosis Framework for Manufacturing Systems
A General End-to-end Diagnosis Framework for Manufacturing Systems
Ye Yuan
Guijun Ma
Cheng Cheng
Beitong Zhou
Huan Zhao
Hai-Tao Zhang
Han Ding
AI4CE
75
122
0
17 Dec 2018
Analyzing Neuroimaging Data Through Recurrent Deep Learning Models
Analyzing Neuroimaging Data Through Recurrent Deep Learning Models
A. Thomas
H. Heekeren
K. Müller
Wojciech Samek
63
78
0
23 Oct 2018
Explaining the Unique Nature of Individual Gait Patterns with Deep
  Learning
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
Fabian Horst
Sebastian Lapuschkin
Wojciech Samek
K. Müller
W. Schöllhorn
AI4CE
63
213
0
13 Aug 2018
AudioMNIST: Exploring Explainable Artificial Intelligence for Audio
  Analysis on a Simple Benchmark
AudioMNIST: Exploring Explainable Artificial Intelligence for Audio Analysis on a Simple Benchmark
Sören Becker
Johanna Vielhaben
M. Ackermann
Klaus-Robert Muller
Sebastian Lapuschkin
Wojciech Samek
XAI
113
100
0
09 Jul 2018
EEG-GAN: Generative adversarial networks for electroencephalograhic
  (EEG) brain signals
EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
K. Hartmann
R. Schirrmeister
T. Ball
GANAI4TS
80
235
0
05 Jun 2018
Compact and Computationally Efficient Representation of Deep Neural
  Networks
Compact and Computationally Efficient Representation of Deep Neural Networks
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
87
71
0
27 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
74
97
0
16 May 2018
Compact Convolutional Neural Networks for Classification of Asynchronous
  Steady-state Visual Evoked Potentials
Compact Convolutional Neural Networks for Classification of Asynchronous Steady-state Visual Evoked Potentials
Nicholas R. Waytowich
Vernon J. Lawhern
J. Garcia
J. Cummings
J. Faller
P. Sajda
J. Vettel
70
187
0
12 Mar 2018
Bioinformatics and Medicine in the Era of Deep Learning
Bioinformatics and Medicine in the Era of Deep Learning
D. Bacciu
P. Lisboa
José D. Martín
R. Stoean
A. Vellido
AI4CEBDL
64
17
0
27 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
181
4,007
0
06 Feb 2018
Hierarchical internal representation of spectral features in deep
  convolutional networks trained for EEG decoding
Hierarchical internal representation of spectral features in deep convolutional networks trained for EEG decoding
K. Hartmann
R. Schirrmeister
T. Ball
87
27
0
21 Nov 2017
Applications of Deep Learning and Reinforcement Learning to Biological
  Data
Applications of Deep Learning and Reinforcement Learning to Biological Data
M. S. M. Mahmud
M. S. Kaiser
Amir Hussain
S. Vassanelli
OffRLAI4CE
85
646
0
10 Nov 2017
Deep Transfer Learning for Error Decoding from Non-Invasive EEG
Deep Transfer Learning for Error Decoding from Non-Invasive EEG
M. Völker
R. Schirrmeister
L. Fiederer
Wolfram Burgard
T. Ball
101
37
0
25 Oct 2017
Unsupervised Machine Learning for Networking: Techniques, Applications
  and Research Challenges
Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
Muhammad Usama
Junaid Qadir
Aunn Raza
Hunain Arif
K. Yau
Y. Elkhatib
Amir Hussain
Ala I. Al-Fuqaha
SSL
91
330
0
19 Sep 2017
12
Next