ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.06318
  4. Cited By
TI-POOLING: transformation-invariant pooling for feature learning in
  Convolutional Neural Networks
v1v2 (latest)

TI-POOLING: transformation-invariant pooling for feature learning in Convolutional Neural Networks

21 April 2016
D. Laptev
Nikolay Savinov
J. M. Buhmann
Marc Pollefeys
    OOD
ArXiv (abs)PDFHTML

Papers citing "TI-POOLING: transformation-invariant pooling for feature learning in Convolutional Neural Networks"

50 / 122 papers shown
Title
A Regularization-Guided Equivariant Approach for Image Restoration
A Regularization-Guided Equivariant Approach for Image Restoration
Yulu Bai
J. Fu
Qi Xie
Deyu Meng
25
0
0
26 May 2025
Computer Vision Models Show Human-Like Sensitivity to Geometric and Topological Concepts
Computer Vision Models Show Human-Like Sensitivity to Geometric and Topological Concepts
Zekun Wang
Sashank Varma
43
0
0
19 May 2025
Spectral State Space Model for Rotation-Invariant Visual Representation Learning
Spectral State Space Model for Rotation-Invariant Visual Representation Learning
Sahar Dastani
Ali Bahri
Moslem Yazdanpanah
Mehrdad Noori
David Osowiechi
...
Farzad Beizaee
Milad Cheraghalikhani
A. Mondal
H. Lombaert
Christian Desrosiers
158
0
0
09 Mar 2025
Towards Invariance to Node Identifiers in Graph Neural Networks
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
184
4
0
20 Feb 2025
On the Utilization of Unique Node Identifiers in Graph Neural Networks
On the Utilization of Unique Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
64
0
0
04 Nov 2024
PreCM: The Padding-based Rotation Equivariant Convolution Mode for Semantic Segmentation
PreCM: The Padding-based Rotation Equivariant Convolution Mode for Semantic Segmentation
Xinyu Xu
Huazhen Liu
Huilin Xiong
Wenhao Yu
Tao Zhang
222
0
0
03 Nov 2024
A Stochastic Approach to Bi-Level Optimization for Hyperparameter
  Optimization and Meta Learning
A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning
Minyoung Kim
Timothy M. Hospedales
BDL
115
0
0
14 Oct 2024
Steerable Transformers for Volumetric Data
Steerable Transformers for Volumetric Data
Soumyabrata Kundu
Risi Kondor
LLMSVViT
114
1
0
24 May 2024
Enhancing lattice kinetic schemes for fluid dynamics with
  Lattice-Equivariant Neural Networks
Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks
Giulio Ortali
Alessandro Gabbana
Imre Atmodimedjo
Alessandro Corbetta
AI4CE
89
1
0
22 May 2024
Achieving Rotation Invariance in Convolution Operations: Shifting from
  Data-Driven to Mechanism-Assured
Achieving Rotation Invariance in Convolution Operations: Shifting from Data-Driven to Mechanism-Assured
Hanlin Mo
Guoying Zhao
OOD
61
0
0
17 Apr 2024
Efficient Rotation Invariance in Deep Neural Networks through Artificial
  Mental Rotation
Efficient Rotation Invariance in Deep Neural Networks through Artificial Mental Rotation
Lukas Tuggener
Thilo Stadelmann
Jürgen Schmidhuber
OOD
45
1
0
14 Nov 2023
Revisiting Data Augmentation for Rotational Invariance in Convolutional
  Neural Networks
Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks
F. Quiroga
Franco Ronchetti
Laura Lanzarini
A. F. Bariviera
64
36
0
12 Oct 2023
Orientation-Independent Chinese Text Recognition in Scene Images
Orientation-Independent Chinese Text Recognition in Scene Images
Haiyang Yu
Xiaocong Wang
Bin Li
Xiangyang Xue
60
5
0
03 Sep 2023
DUET: 2D Structured and Approximately Equivariant Representations
DUET: 2D Structured and Approximately Equivariant Representations
Xavier Suau
Federico Danieli
Thomas Anderson Keller
Arno Blaas
Chen Huang
Jason Ramapuram
Dan Busbridge
Luca Zappella
58
3
0
28 Jun 2023
Group Invariant Global Pooling
Group Invariant Global Pooling
Kamil Bujel
Yonatan Gideoni
Chaitanya K. Joshi
Pietro Lio
62
0
0
30 May 2023
Sorted Convolutional Network for Achieving Continuous Rotational
  Invariance
Sorted Convolutional Network for Achieving Continuous Rotational Invariance
Hanlin Mo
Guoying Zhao
42
0
0
23 May 2023
Subspace-Configurable Networks
Subspace-Configurable Networks
Dong Wang
O. Saukh
Xiaoxi He
Lothar Thiele
OOD
82
0
0
22 May 2023
BEVPlace: Learning LiDAR-based Place Recognition using Bird's Eye View
  Images
BEVPlace: Learning LiDAR-based Place Recognition using Bird's Eye View Images
L. Luo
Shuhang Zheng
Yixuan Li
Y. Fan
B. Yu
Sixi Cao
Hui-Liang Shen
3DPC
70
44
0
28 Feb 2023
Steerable Equivariant Representation Learning
Steerable Equivariant Representation Learning
Sangnie Bhardwaj
Willie McClinton
Tongzhou Wang
Guillaume Lajoie
Chen Sun
Phillip Isola
Dilip Krishnan
OODLLMSV
64
5
0
22 Feb 2023
Robust Perception through Equivariance
Robust Perception through Equivariance
Chengzhi Mao
Lingyu Zhang
Abhishek Joshi
Junfeng Yang
Hongya Wang
Carl Vondrick
BDLAAML
88
8
0
12 Dec 2022
Transformation-Equivariant 3D Object Detection for Autonomous Driving
Transformation-Equivariant 3D Object Detection for Autonomous Driving
Hai Wu
Chenglu Wen
Wei Li
Xin Li
Ruigang Yang
Cheng-i Wang
3DPC
94
90
0
22 Nov 2022
RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network
RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network
Hanlin Mo
Guoying Zhao
81
34
0
21 Nov 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
88
19
0
24 Oct 2022
The Lie Derivative for Measuring Learned Equivariance
The Lie Derivative for Measuring Learned Equivariance
Nate Gruver
Marc Finzi
Micah Goldblum
A. Wilson
92
40
0
06 Oct 2022
A Simple Strategy to Provable Invariance via Orbit Mapping
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML3DPC
67
3
0
24 Sep 2022
A Rotation Meanout Network with Invariance for Dermoscopy Image
  Classification and Retrieval
A Rotation Meanout Network with Invariance for Dermoscopy Image Classification and Retrieval
Yilan Zhang
Feng-ying Xie
Xuedong Song
Hangning Zhou
Yiguang Yang
Haopeng Zhang
Jie Liu
OOD
38
9
0
01 Aug 2022
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
  Training Data Estimate a Combination of the Same Core Quantities
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities
Julian Bitterwolf
Alexander Meinke
Maximilian Augustin
Matthias Hein
OODD
112
27
0
20 Jun 2022
Equivariance Discovery by Learned Parameter-Sharing
Equivariance Discovery by Learned Parameter-Sharing
Raymond A. Yeh
Yuan-Ting Hu
M. Hasegawa-Johnson
Alex Schwing
FedML
71
15
0
07 Apr 2022
LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
  Feature Similarity
LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of Feature Similarity
Tejan Karmali
Abhinav Atrishi
Sai Sree Harsha
Susmit Agrawal
Varun Jampani
R. Venkatesh Babu
SSL
141
5
0
06 Apr 2022
Resource-Efficient Invariant Networks: Exponential Gains by Unrolled
  Optimization
Resource-Efficient Invariant Networks: Exponential Gains by Unrolled Optimization
Sam Buchanan
Jingkai Yan
Ellie Haber
John N. Wright
53
3
0
09 Mar 2022
RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
  Deep Learning
RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds Deep Learning
Zhiyuan Zhang
Binh-Son Hua
Sai-Kit Yeung
3DPC
84
49
0
26 Feb 2022
RRL:Regional Rotation Layer in Convolutional Neural Networks
RRL:Regional Rotation Layer in Convolutional Neural Networks
Zongbo Hao
Tao Zhang
MingWang Chen
Kaixuan Zhou
49
2
0
25 Feb 2022
Improving the Sample-Complexity of Deep Classification Networks with
  Invariant Integration
Improving the Sample-Complexity of Deep Classification Networks with Invariant Integration
M. Rath
Alexandru Paul Condurache
59
8
0
08 Feb 2022
OneDConv: Generalized Convolution For Transform-Invariant Representation
OneDConv: Generalized Convolution For Transform-Invariant Representation
Tong Zhang
Haohan Weng
Ke Yi
Chong Chen
30
0
0
15 Jan 2022
Implicit Equivariance in Convolutional Networks
Implicit Equivariance in Convolutional Networks
Naman Khetan
Tushar Arora
S. U. Rehman
D. K. Gupta
83
5
0
28 Nov 2021
Wiggling Weights to Improve the Robustness of Classifiers
Wiggling Weights to Improve the Robustness of Classifiers
Sadaf Gulshad
Ivan Sosnovik
A. Smeulders
OOD
47
0
0
18 Nov 2021
Sampling Equivariant Self-attention Networks for Object Detection in
  Aerial Images
Sampling Equivariant Self-attention Networks for Object Detection in Aerial Images
Guo-Ye Yang
Xiang-Li Li
Ralph Robert Martin
Shimin Hu
3DPC
56
13
0
05 Nov 2021
Deep Learning for UAV-based Object Detection and Tracking: A Survey
Deep Learning for UAV-based Object Detection and Tracking: A Survey
Chao Xu
Wei Li
Danfeng Hong
R. Tao
Yong Liu
104
194
0
25 Oct 2021
Anti-aliasing Deep Image Classifiers using Novel Depth Adaptive Blurring
  and Activation Function
Anti-aliasing Deep Image Classifiers using Novel Depth Adaptive Blurring and Activation Function
Md Tahmid Hossain
S. Teng
Ferdous Sohel
Guojun Lu
76
13
0
03 Oct 2021
Nonlinearities in Steerable SO(2)-Equivariant CNNs
Nonlinearities in Steerable SO(2)-Equivariant CNNs
Daniel Franzen
Michael Wand
74
3
0
14 Sep 2021
Designing Rotationally Invariant Neural Networks from PDEs and
  Variational Methods
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
71
4
0
31 Aug 2021
Fourier Series Expansion Based Filter Parametrization for Equivariant
  Convolutions
Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions
Qi Xie
Qian Zhao
Zongben Xu
Deyu Meng
87
22
0
30 Jul 2021
Geometric Data Augmentation Based on Feature Map Ensemble
Geometric Data Augmentation Based on Feature Map Ensemble
Takashi Shibata
Masayuki Tanaka
Masatoshi Okutomi
57
0
0
22 Jul 2021
Training or Architecture? How to Incorporate Invariance in Neural
  Networks
Training or Architecture? How to Incorporate Invariance in Neural Networks
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
3DPCOOD
61
10
0
18 Jun 2021
Equivariance-bridged SO(2)-Invariant Representation Learning using Graph
  Convolutional Network
Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network
Sungwon Hwang
Hyungtae Lim
Hyun Myung
40
2
0
18 Jun 2021
Mean Embeddings with Test-Time Data Augmentation for Ensembling of
  Representations
Mean Embeddings with Test-Time Data Augmentation for Ensembling of Representations
Arsenii Ashukha
Andrei Atanov
Dmitry Vetrov
OODFedML
74
6
0
15 Jun 2021
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
91
24
0
11 Jun 2021
Rotating spiders and reflecting dogs: a class conditional approach to
  learning data augmentation distributions
Rotating spiders and reflecting dogs: a class conditional approach to learning data augmentation distributions
Scott Mahan
Henry Kvinge
T. Doster
OOD
13
3
0
07 Jun 2021
FILTRA: Rethinking Steerable CNN by Filter Transform
FILTRA: Rethinking Steerable CNN by Filter Transform
Yue Liu
Qili Wang
G. Lee
39
4
0
25 May 2021
Rotation invariant CNN using scattering transform for image
  classification
Rotation invariant CNN using scattering transform for image classification
Rosemberg Rodriguez
Eva Dokládalová
P. Dokládal
55
17
0
21 May 2021
123
Next