ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.03257
  4. Cited By
Unified Convergence Analysis of Stochastic Momentum Methods for Convex
  and Non-convex Optimization

Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization

12 April 2016
Tianbao Yang
Qihang Lin
Zhe Li
ArXivPDFHTML

Papers citing "Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization"

32 / 32 papers shown
Title
Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum
Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum
H. Cai
Sulaiman A. Alghunaim
Ali H.Sayed
52
1
0
18 Jun 2024
Almost sure convergence rates of stochastic gradient methods under gradient domination
Almost sure convergence rates of stochastic gradient methods under gradient domination
Simon Weissmann
Sara Klein
Waïss Azizian
Leif Döring
39
3
0
22 May 2024
From Optimization to Control: Quasi Policy Iteration
From Optimization to Control: Quasi Policy Iteration
Mohammad Amin Sharifi Kolarijani
Peyman Mohajerin Esfahani
32
2
0
18 Nov 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
26
0
0
19 Oct 2023
Acceleration of stochastic gradient descent with momentum by averaging:
  finite-sample rates and asymptotic normality
Acceleration of stochastic gradient descent with momentum by averaging: finite-sample rates and asymptotic normality
Kejie Tang
Weidong Liu
Yichen Zhang
Xi Chen
21
2
0
28 May 2023
Differentiable Arbitrating in Zero-sum Markov Games
Differentiable Arbitrating in Zero-sum Markov Games
Jing Wang
Meichen Song
Feng Gao
Boyi Liu
Zhaoran Wang
Yi Wu
43
2
0
20 Feb 2023
On Almost Sure Convergence Rates of Stochastic Gradient Methods
On Almost Sure Convergence Rates of Stochastic Gradient Methods
Jun Liu
Ye Yuan
21
36
0
09 Feb 2022
A Novel Convergence Analysis for Algorithms of the Adam Family
A Novel Convergence Analysis for Algorithms of the Adam Family
Zhishuai Guo
Yi Tian Xu
W. Yin
Rong Jin
Tianbao Yang
39
47
0
07 Dec 2021
Training Generative Adversarial Networks with Adaptive Composite
  Gradient
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
29
3
0
10 Nov 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern
  Error Feedback
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
46
46
0
07 Oct 2021
Accelerate Distributed Stochastic Descent for Nonconvex Optimization
  with Momentum
Accelerate Distributed Stochastic Descent for Nonconvex Optimization with Momentum
Guojing Cong
Tianyi Liu
16
0
0
01 Oct 2021
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Guanghui Wang
Minghao Yang
Lijun Zhang
Tianbao Yang
41
22
0
02 Jul 2021
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex
  Optimization
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
11
7
0
04 Oct 2020
Federated Learning with Nesterov Accelerated Gradient
Federated Learning with Nesterov Accelerated Gradient
Zhengjie Yang
Wei Bao
Dong Yuan
Nguyen H. Tran
Albert Y. Zomaya
FedML
19
29
0
18 Sep 2020
Online Algorithms for Estimating Change Rates of Web Pages
Online Algorithms for Estimating Change Rates of Web Pages
Konstantin Avrachenkov
Kishor P. Patil
Gugan Thoppe
6
16
0
17 Sep 2020
Effective Federated Adaptive Gradient Methods with Non-IID Decentralized
  Data
Effective Federated Adaptive Gradient Methods with Non-IID Decentralized Data
Qianqian Tong
Guannan Liang
J. Bi
FedML
41
27
0
14 Sep 2020
A High Probability Analysis of Adaptive SGD with Momentum
A High Probability Analysis of Adaptive SGD with Momentum
Xiaoyun Li
Francesco Orabona
92
66
0
28 Jul 2020
Almost sure convergence rates for Stochastic Gradient Descent and
  Stochastic Heavy Ball
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball
Othmane Sebbouh
Robert Mansel Gower
Aaron Defazio
8
22
0
14 Jun 2020
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
MixML: A Unified Analysis of Weakly Consistent Parallel Learning
Yucheng Lu
J. Nash
Christopher De Sa
FedML
32
12
0
14 May 2020
On the Convergence of Nesterov's Accelerated Gradient Method in
  Stochastic Settings
On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings
Mahmoud Assran
Michael G. Rabbat
14
59
0
27 Feb 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
22
47
0
06 Feb 2020
Understanding the Role of Momentum in Stochastic Gradient Methods
Understanding the Role of Momentum in Stochastic Gradient Methods
Igor Gitman
Hunter Lang
Pengchuan Zhang
Lin Xiao
33
94
0
30 Oct 2019
Continuous Time Analysis of Momentum Methods
Continuous Time Analysis of Momentum Methods
Nikola B. Kovachki
Andrew M. Stuart
23
33
0
10 Jun 2019
Rapidly Adapting Moment Estimation
Rapidly Adapting Moment Estimation
Guoqiang Zhang
Kenta Niwa
W. Kleijn
ODL
8
0
0
24 Feb 2019
Accelerated Linear Convergence of Stochastic Momentum Methods in
  Wasserstein Distances
Accelerated Linear Convergence of Stochastic Momentum Methods in Wasserstein Distances
Bugra Can
Mert Gurbuzbalaban
Lingjiong Zhu
11
45
0
22 Jan 2019
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
60
11
0
10 Dec 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and
  Applications in Machine Learning
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
On the Generalization of Stochastic Gradient Descent with Momentum
On the Generalization of Stochastic Gradient Descent with Momentum
Ali Ramezani-Kebrya
Kimon Antonakopoulos
V. Cevher
Ashish Khisti
Ben Liang
MLT
14
23
0
12 Sep 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton,
  Proximal Point and Subspace Descent Methods
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature
  for Non-Convex Optimization
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature for Non-Convex Optimization
Yi Tian Xu
Rong Jin
Tianbao Yang
35
25
0
04 Dec 2017
Stochastic Heavy Ball
Stochastic Heavy Ball
S. Gadat
Fabien Panloup
Sofiane Saadane
18
103
0
14 Sep 2016
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
RSG: Beating Subgradient Method without Smoothness and Strong Convexity
Tianbao Yang
Qihang Lin
32
84
0
09 Dec 2015
1