ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08311
108
2

Accelerated Gradient Flow: Risk, Stability, and Implicit Regularization

20 January 2022
Yue Sheng
Alnur Ali
ArXiv (abs)PDFHTML
Abstract

Acceleration and momentum are the de facto standard in modern applications of machine learning and optimization, yet the bulk of the work on implicit regularization focuses instead on unaccelerated methods. In this paper, we study the statistical risk of the iterates generated by Nesterov's accelerated gradient method and Polyak's heavy ball method, when applied to least squares regression, drawing several connections to explicit penalization. We carry out our analyses in continuous-time, allowing us to make sharper statements than in prior work, and revealing complex interactions between early stopping, stability, and the curvature of the loss function.

View on arXiv
Comments on this paper