ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.05643
  4. Cited By
Variance Reduction for Faster Non-Convex Optimization

Variance Reduction for Faster Non-Convex Optimization

17 March 2016
Zeyuan Allen-Zhu
Elad Hazan
    ODL
ArXivPDFHTML

Papers citing "Variance Reduction for Faster Non-Convex Optimization"

50 / 78 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction
DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction
Xinwei Zhang
Zhiqi Bu
Borja Balle
Mingyi Hong
Meisam Razaviyayn
Vahab Mirrokni
78
2
0
04 Oct 2024
Debiasing Federated Learning with Correlated Client Participation
Debiasing Federated Learning with Correlated Client Participation
Zhenyu Sun
Ziyang Zhang
Zheng Xu
Gauri Joshi
Pranay Sharma
Ermin Wei
FedML
29
0
0
02 Oct 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
38
0
0
19 Jul 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
48
3
0
19 Mar 2024
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex
  Finite Sum Problems
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems
Yanjie Zhong
Jiaqi Li
Soumendra Lahiri
27
1
0
29 Jan 2024
A Coefficient Makes SVRG Effective
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
33
1
0
09 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex
  Optimization
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
26
1
0
24 Oct 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates
  and Practical Features
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient
  Correction
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
37
6
0
09 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for
  non-convex composite optimization
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Variance-Reduced Conservative Policy Iteration
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class
  of Nonconvex-Nonconcave Minimax Problems
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
21
11
0
24 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural
  Policy Gradient Methods
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
48
102
0
15 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum
  Minimization
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
24
15
0
03 Nov 2022
Do We Need to Penalize Variance of Losses for Learning with Label Noise?
Do We Need to Penalize Variance of Losses for Learning with Label Noise?
Yexiong Lin
Yu Yao
Yuxuan Du
Jun Yu
Bo Han
Biwei Huang
Tongliang Liu
NoLa
53
3
0
30 Jan 2022
Distributed Policy Gradient with Variance Reduction in Multi-Agent
  Reinforcement Learning
Distributed Policy Gradient with Variance Reduction in Multi-Agent Reinforcement Learning
Xiaoxiao Zhao
Jinlong Lei
Li Li
Jie-bin Chen
OffRL
18
2
0
25 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
43
1
0
25 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent
  Reinforcement Learning
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
Kaipeng Zhang
Tamer Bacsar
39
57
0
12 Oct 2021
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Stochastic Anderson Mixing for Nonconvex Stochastic Optimization
Fu Wei
Chenglong Bao
Yang Liu
30
19
0
04 Oct 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical
  Viewpoints
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
26
13
0
19 Jul 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
  Trained by Gradient Descent
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
26
25
0
25 Jun 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
43
14
0
21 Mar 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
75
15
0
16 Feb 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
15
7
0
12 Feb 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
  Nonconvex Optimization
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
31
126
0
25 Aug 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex
  Learning
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
26
9
0
08 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for
  composite nonconvex stochastic optimization
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
17
23
0
31 May 2020
A Data-Driven Frequency Scaling Approach for Deadline-aware Energy
  Efficient Scheduling on Graphics Processing Units (GPUs)
A Data-Driven Frequency Scaling Approach for Deadline-aware Energy Efficient Scheduling on Graphics Processing Units (GPUs)
Shashikant Ilager
R. Muralidhar
K. Ramamohanarao
Rajkumar Buyya
11
13
0
17 Apr 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
35
17
0
11 Feb 2020
On the Global Convergence of (Fast) Incremental Expectation Maximization
  Methods
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
Belhal Karimi
Hoi-To Wai
Eric Moulines
M. Lavielle
32
27
0
28 Oct 2019
History-Gradient Aided Batch Size Adaptation for Variance Reduced
  Algorithms
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji
Zhe Wang
Bowen Weng
Yi Zhou
Wei Zhang
Yingbin Liang
ODL
18
5
0
21 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance
  Reduction
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
31
83
0
18 Sep 2019
Stochastic First-order Methods for Convex and Nonconvex Functional
  Constrained Optimization
Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization
Digvijay Boob
Qi Deng
Guanghui Lan
52
92
0
07 Aug 2019
Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part
  I
Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I
Sandeep Kumar
K. Rajawat
Daniel P. Palomar
19
4
0
21 Jul 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
33
0
01 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
25
134
0
18 Apr 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep
  Learning
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
60
11
0
10 Dec 2018
Stochastic Optimization for DC Functions and Non-smooth Non-convex
  Regularizers with Non-asymptotic Convergence
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
Rong Jin
Tianbao Yang
37
41
0
28 Nov 2018
A Local Regret in Nonconvex Online Learning
A Local Regret in Nonconvex Online Learning
Sergul Aydore
Lee H. Dicker
Dean Phillips Foster
28
3
0
13 Nov 2018
SpiderBoost and Momentum: Faster Stochastic Variance Reduction
  Algorithms
SpiderBoost and Momentum: Faster Stochastic Variance Reduction Algorithms
Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
ODL
35
81
0
25 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
19
31
0
05 Oct 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and
  Applications in Machine Learning
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
570
0
04 Jul 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence
  Rates
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
14
74
0
28 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
19
174
0
14 Jun 2018
12
Next