ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.05279
  4. Cited By
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
  Networks

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

16 March 2016
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
    MQ
ArXivPDFHTML

Papers citing "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks"

50 / 775 papers shown
Title
Self-Compression in Bayesian Neural Networks
Self-Compression in Bayesian Neural Networks
Giuseppina Carannante
Dimah Dera
Ghulam Rasool
N. Bouaynaya
UQCV
BDL
36
5
0
10 Nov 2021
Multi-Glimpse Network: A Robust and Efficient Classification
  Architecture based on Recurrent Downsampled Attention
Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention
S. Tan
Runpei Dong
Kaisheng Ma
22
2
0
03 Nov 2021
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment
Weixin Xu
Zipeng Feng
Shuangkang Fang
Song Yuan
Yi Yang
Shuchang Zhou
MQ
30
1
0
01 Nov 2021
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Ji Lin
Wei-Ming Chen
Han Cai
Chuang Gan
Song Han
47
156
0
28 Oct 2021
Generalized Depthwise-Separable Convolutions for Adversarially Robust
  and Efficient Neural Networks
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks
Hassan Dbouk
Naresh R Shanbhag
AAML
21
7
0
28 Oct 2021
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
Yang Sui
Miao Yin
Yi Xie
Huy Phan
S. Zonouz
Bo Yuan
VLM
40
129
0
26 Oct 2021
Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving
  Adversarial Outcomes
Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving Adversarial Outcomes
Sanghyun Hong
Michael-Andrei Panaitescu-Liess
Yigitcan Kaya
Tudor Dumitras
MQ
60
13
0
26 Oct 2021
Demystifying and Generalizing BinaryConnect
Demystifying and Generalizing BinaryConnect
Abhishek Sharma
Yaoliang Yu
Eyyub Sari
Mahdi Zolnouri
V. Nia
MQ
22
8
0
25 Oct 2021
Instance-Conditional Knowledge Distillation for Object Detection
Instance-Conditional Knowledge Distillation for Object Detection
Zijian Kang
Peizhen Zhang
Xinming Zhang
Jian Sun
N. Zheng
27
76
0
25 Oct 2021
PR-CIM: a Variation-Aware Binary-Neural-Network Framework for
  Process-Resilient Computation-in-memory
PR-CIM: a Variation-Aware Binary-Neural-Network Framework for Process-Resilient Computation-in-memory
Minh-Son Le
Thi-Nhan Pham
Thanh-Dat Nguyen
I. Chang
MQ
21
2
0
19 Oct 2021
Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
  Neural Networks
Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks
Yikai Wang
Yi Yang
Gang Hua
Anbang Yao
MQ
29
15
0
18 Oct 2021
BNAS v2: Learning Architectures for Binary Networks with Empirical
  Improvements
BNAS v2: Learning Architectures for Binary Networks with Empirical Improvements
Dahyun Kim
Kunal Pratap Singh
Jonghyun Choi
MQ
49
7
0
16 Oct 2021
Towards Mixed-Precision Quantization of Neural Networks via Constrained
  Optimization
Towards Mixed-Precision Quantization of Neural Networks via Constrained Optimization
Weihan Chen
Peisong Wang
Jian Cheng
MQ
49
62
0
13 Oct 2021
Partial Variable Training for Efficient On-Device Federated Learning
Partial Variable Training for Efficient On-Device Federated Learning
Tien-Ju Yang
Dhruv Guliani
F. Beaufays
Giovanni Motta
FedML
27
25
0
11 Oct 2021
Towards Streaming Egocentric Action Anticipation
Towards Streaming Egocentric Action Anticipation
Antonino Furnari
G. Farinella
EgoV
33
6
0
11 Oct 2021
Dynamic Binary Neural Network by learning channel-wise thresholds
Dynamic Binary Neural Network by learning channel-wise thresholds
Jiehua Zhang
Z. Su
Yang Feng
Xin Lu
M. Pietikäinen
Li Liu
MQ
19
18
0
08 Oct 2021
8-bit Optimizers via Block-wise Quantization
8-bit Optimizers via Block-wise Quantization
Tim Dettmers
M. Lewis
Sam Shleifer
Luke Zettlemoyer
MQ
34
276
0
06 Oct 2021
CBP: Backpropagation with constraint on weight precision using a
  pseudo-Lagrange multiplier method
CBP: Backpropagation with constraint on weight precision using a pseudo-Lagrange multiplier method
Guhyun Kim
D. Jeong
MQ
55
2
0
06 Oct 2021
Communication-Efficient Federated Learning with Binary Neural Networks
Communication-Efficient Federated Learning with Binary Neural Networks
YuZhi Yang
Zhaoyang Zhang
Qianqian Yang
FedML
37
31
0
05 Oct 2021
Semi-tensor Product-based TensorDecomposition for Neural Network
  Compression
Semi-tensor Product-based TensorDecomposition for Neural Network Compression
Hengling Zhao
Yipeng Liu
Xiaolin Huang
Ce Zhu
47
6
0
30 Sep 2021
Convolutional Neural Network Compression through Generalized Kronecker
  Product Decomposition
Convolutional Neural Network Compression through Generalized Kronecker Product Decomposition
Marawan Gamal Abdel Hameed
Marzieh S. Tahaei
A. Mosleh
V. Nia
47
25
0
29 Sep 2021
Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks
Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks
Yongcheng Jing
Yiding Yang
Xinchao Wang
Xiuming Zhang
Dacheng Tao
28
38
0
27 Sep 2021
Deep Structured Instance Graph for Distilling Object Detectors
Deep Structured Instance Graph for Distilling Object Detectors
Yixin Chen
Pengguang Chen
Shu Liu
Liwei Wang
Jiaya Jia
ObjD
ISeg
23
12
0
27 Sep 2021
RAPID-RL: A Reconfigurable Architecture with Preemptive-Exits for
  Efficient Deep-Reinforcement Learning
RAPID-RL: A Reconfigurable Architecture with Preemptive-Exits for Efficient Deep-Reinforcement Learning
Adarsh Kosta
Malik Aqeel Anwar
Priyadarshini Panda
A. Raychowdhury
Kaushik Roy
13
4
0
16 Sep 2021
OMPQ: Orthogonal Mixed Precision Quantization
OMPQ: Orthogonal Mixed Precision Quantization
Yuexiao Ma
Taisong Jin
Xiawu Zheng
Yan Wang
Huixia Li
Yongjian Wu
Guannan Jiang
Wei Zhang
Rongrong Ji
MQ
19
34
0
16 Sep 2021
Complexity-aware Adaptive Training and Inference for Edge-Cloud
  Distributed AI Systems
Complexity-aware Adaptive Training and Inference for Edge-Cloud Distributed AI Systems
Yinghan Long
I. Chakraborty
G. Srinivasan
Kaushik Roy
30
14
0
14 Sep 2021
Elastic Significant Bit Quantization and Acceleration for Deep Neural
  Networks
Elastic Significant Bit Quantization and Acceleration for Deep Neural Networks
Cheng Gong
Ye Lu
Kunpeng Xie
Zongming Jin
Tao Li
Yanzhi Wang
MQ
27
7
0
08 Sep 2021
Guarding Machine Learning Hardware Against Physical Side-Channel Attacks
Guarding Machine Learning Hardware Against Physical Side-Channel Attacks
Anuj Dubey
Rosario Cammarota
Vikram B. Suresh
Aydin Aysu
AAML
33
31
0
01 Sep 2021
DKM: Differentiable K-Means Clustering Layer for Neural Network
  Compression
DKM: Differentiable K-Means Clustering Layer for Neural Network Compression
Minsik Cho
Keivan Alizadeh Vahid
Saurabh N. Adya
Mohammad Rastegari
42
34
0
28 Aug 2021
Quantization Backdoors to Deep Learning Commercial Frameworks
Quantization Backdoors to Deep Learning Commercial Frameworks
Hua Ma
Huming Qiu
Yansong Gao
Zhi-Li Zhang
A. Abuadbba
Minhui Xue
Anmin Fu
Jiliang Zhang
S. Al-Sarawi
Derek Abbott
MQ
40
19
0
20 Aug 2021
Tiny Machine Learning for Concept Drift
Tiny Machine Learning for Concept Drift
Simone Disabato
M. Roveri
21
27
0
30 Jul 2021
Bias Loss for Mobile Neural Networks
Bias Loss for Mobile Neural Networks
L. Abrahamyan
Valentin Ziatchin
Yiming Chen
Nikos Deligiannis
20
14
0
23 Jul 2021
Double Similarity Distillation for Semantic Image Segmentation
Double Similarity Distillation for Semantic Image Segmentation
Yingchao Feng
Xian Sun
Wenhui Diao
Jihao Li
Xin Gao
24
62
0
19 Jul 2021
A High-Performance Adaptive Quantization Approach for Edge CNN
  Applications
A High-Performance Adaptive Quantization Approach for Edge CNN Applications
Hsu-Hsun Chin
R. Tsay
Hsin-I Wu
MQ
24
5
0
18 Jul 2021
CAP-RAM: A Charge-Domain In-Memory Computing 6T-SRAM for Accurate and
  Precision-Programmable CNN Inference
CAP-RAM: A Charge-Domain In-Memory Computing 6T-SRAM for Accurate and Precision-Programmable CNN Inference
Zhiyu Chen
Zhanghao Yu
Qing Jin
Yan He
Jingyu Wang
Sheng Lin
Dai Li
Yanzhi Wang
Kaiyuan Yang
MQ
23
79
0
06 Jul 2021
Quantum Annealing Formulation for Binary Neural Networks
Quantum Annealing Formulation for Binary Neural Networks
Michele Sasdelli
Tat-Jun Chin
MQ
29
16
0
05 Jul 2021
Smoothed Differential Privacy
Smoothed Differential Privacy
Ao Liu
Yu-Xiang Wang
Lirong Xia
35
0
0
04 Jul 2021
Pool of Experts: Realtime Querying Specialized Knowledge in Massive
  Neural Networks
Pool of Experts: Realtime Querying Specialized Knowledge in Massive Neural Networks
Hakbin Kim
Dong-Wan Choi
25
2
0
03 Jul 2021
Model of the Weak Reset Process in HfOx Resistive Memory for Deep
  Learning Frameworks
Model of the Weak Reset Process in HfOx Resistive Memory for Deep Learning Frameworks
A. Majumdar
M. Bocquet
T. Hirtzlin
Axel Laborieux
Jacques-Olivier Klein
E. Nowak
Elisa Vianello
J. Portal
D. Querlioz
10
3
0
02 Jul 2021
LNS-Madam: Low-Precision Training in Logarithmic Number System using
  Multiplicative Weight Update
LNS-Madam: Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update
Jiawei Zhao
Steve Dai
Rangharajan Venkatesan
Brian Zimmer
Mustafa Ali
Xuan Li
Brucek Khailany
B. Dally
Anima Anandkumar
MQ
39
13
0
26 Jun 2021
How Do Adam and Training Strategies Help BNNs Optimization?
How Do Adam and Training Strategies Help BNNs Optimization?
Zechun Liu
Zhiqiang Shen
Shichao Li
K. Helwegen
Dong Huang
Kwang-Ting Cheng
ODL
MQ
25
83
0
21 Jun 2021
CompConv: A Compact Convolution Module for Efficient Feature Learning
CompConv: A Compact Convolution Module for Efficient Feature Learning
Chen Zhang
Yinghao Xu
Yujun Shen
VLM
SSL
16
10
0
19 Jun 2021
A Winning Hand: Compressing Deep Networks Can Improve
  Out-Of-Distribution Robustness
A Winning Hand: Compressing Deep Networks Can Improve Out-Of-Distribution Robustness
James Diffenderfer
Brian Bartoldson
Shreya Chaganti
Jize Zhang
B. Kailkhura
OOD
31
69
0
16 Jun 2021
Efficient Deep Learning: A Survey on Making Deep Learning Models
  Smaller, Faster, and Better
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Gaurav Menghani
VLM
MedIm
23
367
0
16 Jun 2021
BoolNet: Minimizing The Energy Consumption of Binary Neural Networks
BoolNet: Minimizing The Energy Consumption of Binary Neural Networks
Nianhui Guo
Joseph Bethge
Haojin Yang
Kai Zhong
Xuefei Ning
Christoph Meinel
Yu Wang
MQ
24
11
0
13 Jun 2021
Dynamic Resolution Network
Dynamic Resolution Network
Mingjian Zhu
Kai Han
Enhua Wu
Qiulin Zhang
Ying Nie
Zhenzhong Lan
Yunhe Wang
OOD
37
49
0
05 Jun 2021
Patch Slimming for Efficient Vision Transformers
Patch Slimming for Efficient Vision Transformers
Yehui Tang
Kai Han
Yunhe Wang
Chang Xu
Jianyuan Guo
Chao Xu
Dacheng Tao
ViT
34
163
0
05 Jun 2021
Multiplierless MP-Kernel Machine For Energy-efficient Edge Devices
Multiplierless MP-Kernel Machine For Energy-efficient Edge Devices
Abhishek Ramdas Nair
P. Nath
S. Chakrabartty
Chetan Singh Thakur
51
14
0
03 Jun 2021
Pruning and Slicing Neural Networks using Formal Verification
Pruning and Slicing Neural Networks using Formal Verification
O. Lahav
Guy Katz
26
20
0
28 May 2021
Quantization and Deployment of Deep Neural Networks on Microcontrollers
Quantization and Deployment of Deep Neural Networks on Microcontrollers
Pierre-Emmanuel Novac
G. B. Hacene
Alain Pegatoquet
Benoit Miramond
Vincent Gripon
MQ
25
116
0
27 May 2021
Previous
123456...141516
Next