ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.01670
  4. Cited By
Network Morphism
v1v2 (latest)

Network Morphism

5 March 2016
Tao Wei
Changhu Wang
Y. Rui
Chen Chen
ArXiv (abs)PDFHTML

Papers citing "Network Morphism"

18 / 18 papers shown
Title
LESA: Learnable LLM Layer Scaling-Up
LESA: Learnable LLM Layer Scaling-Up
Yifei Yang
Zouying Cao
Xinbei Ma
Yao Yao
L. Qin
Zhongfu Chen
Hai Zhao
144
0
0
20 Feb 2025
NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks
NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks
Matteo Gambella
Jary Pomponi
Simone Scardapane
Manuel Roveri
68
2
0
24 Jan 2024
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
741
37,886
0
20 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Net2Net: Accelerating Learning via Knowledge Transfer
Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen
Ian Goodfellow
Jonathon Shlens
162
672
0
18 Nov 2015
Batch-normalized Maxout Network in Network
Batch-normalized Maxout Network in Network
Jia-Ren Chang
Yonghao Chen
OOD
95
108
0
09 Nov 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMatObjD
520
62,360
0
04 Jun 2015
Fast R-CNN
Fast R-CNN
Ross B. Girshick
ObjD
309
25,081
0
30 Apr 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,723
0
09 Mar 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
326
18,647
0
06 Feb 2015
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
308
3,893
0
19 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
480
43,685
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,590
0
01 Sep 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLMBDL3DV
274
14,713
0
20 Jun 2014
Do Deep Nets Really Need to be Deep?
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
165
2,119
0
21 Dec 2013
Network In Network
Network In Network
Min Lin
Qiang Chen
Shuicheng Yan
294
6,283
0
16 Dec 2013
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
289
26,211
0
11 Nov 2013
1