ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.00570
  4. Cited By
Without-Replacement Sampling for Stochastic Gradient Methods:
  Convergence Results and Application to Distributed Optimization
v1v2v3 (latest)

Without-Replacement Sampling for Stochastic Gradient Methods: Convergence Results and Application to Distributed Optimization

2 March 2016
Ohad Shamir
ArXiv (abs)PDFHTML

Papers citing "Without-Replacement Sampling for Stochastic Gradient Methods: Convergence Results and Application to Distributed Optimization"

10 / 10 papers shown
Title
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
175
1,932
0
07 Sep 2019
An Introduction to Matrix Concentration Inequalities
An Introduction to Matrix Concentration Inequalities
J. Tropp
168
1,154
0
07 Jan 2015
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
91
353
0
04 Sep 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
133
1,826
0
01 Jul 2014
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
183
260
0
10 Dec 2012
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
151
574
0
08 Dec 2012
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
184
1,033
0
10 Sep 2012
Beneath the valley of the noncommutative arithmetic-geometric mean
  inequality: conjectures, case-studies, and consequences
Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences
Benjamin Recht
Christopher Ré
64
51
0
19 Feb 2012
A Reliable Effective Terascale Linear Learning System
A Reliable Effective Terascale Linear Learning System
Alekh Agarwal
O. Chapelle
Miroslav Dudík
John Langford
94
418
0
19 Oct 2011
Better Mini-Batch Algorithms via Accelerated Gradient Methods
Better Mini-Batch Algorithms via Accelerated Gradient Methods
Andrew Cotter
Ohad Shamir
Nathan Srebro
Karthik Sridharan
ODL
120
315
0
22 Jun 2011
1