ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1110.4198
74
418

A Reliable Effective Terascale Linear Learning System

19 October 2011
Alekh Agarwal
O. Chapelle
Miroslav Dudík
John Langford
ArXivPDFHTML
Abstract

We present a system and a set of techniques for learning linear predictors with convex losses on terascale datasets, with trillions of features, {The number of features here refers to the number of non-zero entries in the data matrix.} billions of training examples and millions of parameters in an hour using a cluster of 1000 machines. Individually none of the component techniques are new, but the careful synthesis required to obtain an efficient implementation is. The result is, up to our knowledge, the most scalable and efficient linear learning system reported in the literature (as of 2011 when our experiments were conducted). We describe and thoroughly evaluate the components of the system, showing the importance of the various design choices.

View on arXiv
Comments on this paper