Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.00285
Cited By
Kernel-based Tests for Joint Independence
1 March 2016
Niklas Pfister
Peter Buhlmann
Bernhard Schölkopf
J. Peters
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kernel-based Tests for Joint Independence"
25 / 25 papers shown
Title
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
76
0
0
30 Apr 2025
Conditional Dependence via U-Statistics Pruning
Ferran de Cabrera
Marc Vilà-Insa
Jaume Riba
30
0
0
21 Oct 2024
Specification procedures for multivariate stable-Paretian laws for independent and for conditionally heteroskedastic data
S. Meintanis
John P. Nolan
C. Pretorius
19
3
0
20 Oct 2023
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Juraj Bodik
V. Chavez-Demoulin
CML
31
1
0
29 Jul 2023
Neural Mixed Effects for Nonlinear Personalized Predictions
T. Wörtwein
Nicholas B. Allen
Lisa B. Sheeber
Randy P. Auerbach
J. Cohn
Louis-Philippe Morency
34
7
0
13 Jun 2023
Statistical inferences for complex dependence of multimodal imaging data
Jinyuan Chang
Jing He
Jian Kang
Mingcong Wu
36
2
0
07 Mar 2023
Kernelized Cumulants: Beyond Kernel Mean Embeddings
Patric Bonnier
Harald Oberhauser
Zoltan Szabo
33
6
0
29 Jan 2023
A fast and accurate kernel-based independence test with applications to high-dimensional and functional data
Jin-Ting Zhang
Tianming Zhu
16
2
0
03 Jan 2023
A survey of some recent developments in measures of association
S. Chatterjee
19
14
0
09 Nov 2022
On the Identifiability and Estimation of Causal Location-Scale Noise Models
Alexander Immer
Christoph Schultheiss
Julia E. Vogt
Bernhard Schölkopf
Peter Buhlmann
Alexander Marx
CML
41
32
0
13 Oct 2022
Variance Covariance Regularization Enforces Pairwise Independence in Self-Supervised Representations
Grégoire Mialon
Randall Balestriero
Yann LeCun
32
9
0
29 Sep 2022
A Simple Unified Approach to Testing High-Dimensional Conditional Independences for Categorical and Ordinal Data
Ankur Ankan
J. Textor
CML
34
5
0
09 Jun 2022
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
32
45
0
01 Apr 2022
Data-Driven Representations for Testing Independence: Modeling, Analysis and Connection with Mutual Information Estimation
Mauricio E. Gonzalez
Jorge F. Silva
M. Videla
Marcos E. Orchard
42
10
0
27 Oct 2021
A simple and flexible test of sample exchangeability with applications to statistical genomics
Alan J. Aw
J. Spence
Yun S. Song
19
0
0
30 Sep 2021
Grouped Feature Importance and Combined Features Effect Plot
Quay Au
J. Herbinger
Clemens Stachl
B. Bischl
Giuseppe Casalicchio
FAtt
45
44
0
23 Apr 2021
BEAUTY Powered BEAST
Kai Zhang
Zhigen Zhao
Wen-Xin Zhou
29
8
0
01 Mar 2021
Testing for Normality with Neural Networks
M. Simic
29
6
0
29 Sep 2020
Testing Conditional Independence via Quantile Regression Based Partial Copulas
Lasse Petersen
N. Hansen
19
14
0
29 Mar 2020
A new coefficient of correlation
S. Chatterjee
26
249
0
23 Sep 2019
The Hellinger Correlation
G. Geenens
P. Lafaye De Micheaux
11
32
0
24 Oct 2018
The conditional permutation test for independence while controlling for confounders
Thomas B. Berrett
Yi Wang
Rina Foygel Barber
R. Samworth
38
16
0
14 Jul 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
36
35
0
13 Feb 2018
BET on Independence
Kai Zhang
21
48
0
17 Oct 2016
A consistent test of independence based on a sign covariance related to Kendall's tau
Wicher P. Bergsma
A. Dassios
98
129
0
24 Jul 2010
1