ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.00967
14
2

A fast and accurate kernel-based independence test with applications to high-dimensional and functional data

3 January 2023
Jin-Ting Zhang
Tianming Zhu
ArXivPDFHTML
Abstract

Testing the dependency between two random variables is an important inference problem in statistics since many statistical procedures rely on the assumption that the two samples are independent. To test whether two samples are independent, a so-called HSIC (Hilbert--Schmidt Independence Criterion)-based test has been proposed. Its null distribution is approximated either by permutation or a Gamma approximation. In this paper, a new HSIC-based test is proposed. Its asymptotic null and alternative distributions are established. It is shown that the proposed test is root-n consistent. A three-cumulant matched chi-squared approximation is adopted to approximate the null distribution of the test statistic. By choosing a proper reproducing kernel, the proposed test can be applied to many different types of data including multivariate, high-dimensional, and functional data. Three simulation studies and two real data applications show that in terms of level accuracy, power, and computational cost, the proposed test outperforms several existing tests for multivariate, high-dimensional, and functional data.

View on arXiv
Comments on this paper