ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06929
  4. Cited By
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample
  Guarantees for Oja's Algorithm

Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm

22 February 2016
Prateek Jain
Chi Jin
Sham Kakade
Praneeth Netrapalli
Aaron Sidford
ArXivPDFHTML

Papers citing "Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm"

27 / 27 papers shown
Title
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Alex Saad-Falcon
Brighton Ancelin
Justin Romberg
19
0
0
16 May 2025
Black-Box $k$-to-$1$-PCA Reductions: Theory and Applications
Black-Box kkk-to-111-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
39
2
0
06 Mar 2024
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Pierre Harvey Richemond
Allison C. Tam
Yunhao Tang
Florian Strub
Bilal Piot
Felix Hill
SSL
31
9
0
09 Feb 2023
Preference Dynamics Under Personalized Recommendations
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
75
34
0
25 May 2022
Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
  Problems
Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector Problems
C. J. Li
Michael I. Jordan
23
2
0
29 Dec 2021
EigenGame: PCA as a Nash Equilibrium
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
24
46
0
01 Oct 2020
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality
  Constraint
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
Ehsan Amid
Manfred K. Warmuth
15
11
0
11 Sep 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed
  Optimization
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
19
317
0
31 May 2019
Winner-Take-All Computation in Spiking Neural Networks
Winner-Take-All Computation in Spiking Neural Networks
Nancy A. Lynch
Cameron Musco
M. Parter
17
23
0
25 Apr 2019
Stochastic Linear Bandits with Hidden Low Rank Structure
Stochastic Linear Bandits with Hidden Low Rank Structure
Sahin Lale
Kamyar Azizzadenesheli
Anima Anandkumar
B. Hassibi
15
28
0
28 Jan 2019
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
570
0
04 Jul 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
13
84
0
12 Jun 2018
Eigenvector Computation and Community Detection in Asynchronous Gossip
  Models
Eigenvector Computation and Community Detection in Asynchronous Gossip Models
Frederik Mallmann-Trenn
Cameron Musco
Christopher Musco
21
9
0
23 Apr 2018
Averaging Stochastic Gradient Descent on Riemannian Manifolds
Averaging Stochastic Gradient Descent on Riemannian Manifolds
Nilesh Tripuraneni
Nicolas Flammarion
Francis R. Bach
Michael I. Jordan
38
99
0
26 Feb 2018
History PCA: A New Algorithm for Streaming PCA
History PCA: A New Algorithm for Streaming PCA
Puyudi Yang
Cho-Jui Hsieh
Jane-ling Wang
AI4TS
20
23
0
15 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex
  Optimization
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
44
52
0
12 Feb 2018
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
35
89
0
10 Jul 2017
Learning Mixture of Gaussians with Streaming Data
Learning Mixture of Gaussians with Streaming Data
Aditi Raghunathan
Ravishankar Krishnaswamy
Prateek Jain
36
8
0
08 Jul 2017
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from
  Streaming Data
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
23
80
0
18 Jun 2017
Average whenever you meet: Opportunistic protocols for community
  detection
Average whenever you meet: Opportunistic protocols for community detection
L. Becchetti
A. Clementi
Pasin Manurangsi
Emanuele Natale
F. Pasquale
P. Raghavendra
Luca Trevisan
16
2
0
15 Mar 2017
PCA in Data-Dependent Noise (Correlated-PCA): Nearly Optimal Finite Sample Guarantees
Namrata Vaswani
Praneeth Narayanamurthy
39
2
0
10 Feb 2017
Follow the Compressed Leader: Faster Online Learning of Eigenvectors and
  Faster MMWU
Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster MMWU
Zeyuan Allen-Zhu
Yuanzhi Li
22
44
0
06 Jan 2017
Parallelizing Stochastic Gradient Descent for Least Squares Regression:
  mini-batching, averaging, and model misspecification
Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification
Prateek Jain
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
Aaron Sidford
MoMe
21
36
0
12 Oct 2016
Practical sketching algorithms for low-rank matrix approximation
Practical sketching algorithms for low-rank matrix approximation
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
22
201
0
31 Aug 2016
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain
Zeyuan Allen-Zhu
Yuanzhi Li
30
128
0
12 Jul 2016
Provable Efficient Online Matrix Completion via Non-convex Stochastic
  Gradient Descent
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Chi Jin
Sham Kakade
Praneeth Netrapalli
19
81
0
26 May 2016
1