ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06822
  4. Cited By
Understanding Visual Concepts with Continuation Learning

Understanding Visual Concepts with Continuation Learning

22 February 2016
William F. Whitney
Michael Chang
Tejas D. Kulkarni
J. Tenenbaum
    DRL
    GAN
ArXivPDFHTML

Papers citing "Understanding Visual Concepts with Continuation Learning"

16 / 16 papers shown
Title
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
31
44
0
17 Mar 2022
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
Unsupervised Learning of Object Keypoints for Perception and Control
Unsupervised Learning of Object Keypoints for Perception and Control
Tejas D. Kulkarni
Ankush Gupta
Catalin Ionescu
Sebastian Borgeaud
Malcolm Reynolds
Andrew Zisserman
Volodymyr Mnih
SSL
OCL
11
193
0
19 Jun 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
26
122
0
03 May 2019
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Minyoung Kim
Yuting Wang
Pritish Sahu
Vladimir Pavlovic
CoGe
CML
DRL
19
38
0
05 Feb 2019
Automatically Composing Representation Transformations as a Means for
  Generalization
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas L. Griffiths
26
68
0
12 Jul 2018
Flexible Neural Representation for Physics Prediction
Flexible Neural Representation for Physics Prediction
Damian Mrowca
Chengxu Zhuang
E. Wang
Nick Haber
Li Fei-Fei
J. Tenenbaum
Daniel L. K. Yamins
OCL
AI4CE
22
248
0
21 Jun 2018
Unsupervised Learning of Object Landmarks through Conditional Image
  Generation
Unsupervised Learning of Object Landmarks through Conditional Image Generation
Tomas Jakab
Ankush Gupta
Hakan Bilen
Andrea Vedaldi
SSL
33
252
0
20 Jun 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
11
822
0
10 Apr 2018
Learning Disentangled Joint Continuous and Discrete Representations
Learning Disentangled Joint Continuous and Discrete Representations
Emilien Dupont
DRL
28
241
0
31 Mar 2018
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
37
410
0
26 Jul 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Early Visual Concept Learning with Unsupervised Deep Learning
Early Visual Concept Learning with Unsupervised Deep Learning
I. Higgins
Loic Matthey
Xavier Glorot
Arka Pal
Benigno Uria
Charles Blundell
S. Mohamed
Alexander Lerchner
CoGe
OCL
DRL
21
173
0
17 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
67
4,210
0
12 Jun 2016
Deep Predictive Coding Networks for Video Prediction and Unsupervised
  Learning
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
William Lotter
Gabriel Kreiman
David D. Cox
SSL
40
927
0
25 May 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
22
1,125
0
20 Apr 2016
1