Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06701
Cited By
Inference Networks for Sequential Monte Carlo in Graphical Models
22 February 2016
Brooks Paige
Frank D. Wood
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inference Networks for Sequential Monte Carlo in Graphical Models"
18 / 18 papers shown
Title
Foundation Inference Models for Markov Jump Processes
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
34
1
0
10 Jun 2024
nbi: the Astronomer's Package for Neural Posterior Estimation
Keming 名 Zhang 张 可
Joshua S. Bloom
Stéfan van der Walt
N. Hernitschek
19
3
0
06 Dec 2023
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
11
0
29 Oct 2021
Semi-parametric
γ
γ
γ
-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
11
7
0
20 Oct 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
110
54
0
23 Mar 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
11
86
0
12 Feb 2020
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
18
14
0
04 Jun 2019
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
13
127
0
15 May 2019
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
27
180
0
30 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
33
358
0
18 May 2018
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank D. Wood
TPM
24
46
0
01 Dec 2017
Translating Neuralese
Jacob Andreas
Anca Dragan
Dan Klein
21
58
0
23 Apr 2017
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
T. Le
A. G. Baydin
R. Zinkov
Frank D. Wood
SyDa
OOD
25
89
0
02 Mar 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
13
164
0
13 Feb 2017
Learning to superoptimize programs - Workshop Version
Rudy Bunel
Alban Desmaison
M. P. Kumar
Philip H. S. Torr
Pushmeet Kohli
21
10
0
04 Dec 2016
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
25
118
0
06 Nov 2016
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
13
81
0
18 Oct 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
28
158
0
20 May 2016
1