ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06042
  4. Cited By
Structured Sparse Regression via Greedy Hard-Thresholding

Structured Sparse Regression via Greedy Hard-Thresholding

19 February 2016
Prateek Jain
Nikhil S. Rao
Inderjit Dhillon
ArXivPDFHTML

Papers citing "Structured Sparse Regression via Greedy Hard-Thresholding"

10 / 10 papers shown
Title
On Iterative Hard Thresholding Methods for High-dimensional M-Estimation
On Iterative Hard Thresholding Methods for High-dimensional M-Estimation
Prateek Jain
Ambuj Tewari
Purushottam Kar
140
229
0
20 Oct 2014
Forward - Backward Greedy Algorithms for Atomic Norm Regularization
Forward - Backward Greedy Algorithms for Atomic Norm Regularization
Nikhil S. Rao
P. Shah
Stephen J. Wright
62
91
0
23 Apr 2014
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Xiao-Tong Yuan
Ping Li
Tong Zhang
160
113
0
22 Nov 2013
Sparse Overlapping Sets Lasso for Multitask Learning and its Application
  to fMRI Analysis
Sparse Overlapping Sets Lasso for Multitask Learning and its Application to fMRI Analysis
Nikhil S. Rao
Christopher R. Cox
Robert D. Nowak
Timothy T. Rogers
95
73
0
20 Nov 2013
Orthogonal Matching Pursuit with Replacement
Orthogonal Matching Pursuit with Replacement
Prateek Jain
Ambuj Tewari
Inderjit S. Dhillon
66
79
0
14 Jun 2011
Convex Approaches to Model Wavelet Sparsity Patterns
Convex Approaches to Model Wavelet Sparsity Patterns
Nikhil S. Rao
Robert D. Nowak
Stephen J. Wright
N. Kingsbury
59
69
0
22 Apr 2011
Convex Analysis and Optimization with Submodular Functions: a Tutorial
Convex Analysis and Optimization with Submodular Functions: a Tutorial
Francis R. Bach
99
37
0
20 Oct 2010
On the conditions used to prove oracle results for the Lasso
On the conditions used to prove oracle results for the Lasso
Sara van de Geer
Peter Buhlmann
255
731
0
05 Oct 2009
Learning with Structured Sparsity
Learning with Structured Sparsity
Junzhou Huang
Tong Zhang
Dimitris N. Metaxas
232
565
0
17 Mar 2009
Taking Advantage of Sparsity in Multi-Task Learning
Taking Advantage of Sparsity in Multi-Task Learning
Karim Lounici
Massimiliano Pontil
Alexandre B. Tsybakov
Sara van de Geer
313
292
0
09 Mar 2009
1