203
292

Taking Advantage of Sparsity in Multi-Task Learning

Abstract

We study the problem of estimating multiple linear regression equations for the purpose of both prediction and variable selection. Following recent work on multi-task learning Argyriou et al. [2008], we assume that the regression vectors share the same sparsity pattern. This means that the set of relevant predictor variables is the same across the different equations. This assumption leads us to consider the Group Lasso as a candidate estimation method. We show that this estimator enjoys nice sparsity oracle inequalities and variable selection properties. The results hold under a certain restricted eigenvalue condition and a coherence condition on the design matrix, which naturally extend recent work in Bickel et al. [2007], Lounici [2008]. In particular, in the multi-task learning scenario, in which the number of tasks can grow, we are able to remove completely the effect of the number of predictor variables in the bounds. Finally, we show how our results can be extended to more general noise distributions, of which we only require the variance to be finite.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.