ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.05473
  4. Cited By
Auxiliary Deep Generative Models
v1v2v3v4 (latest)

Auxiliary Deep Generative Models

17 February 2016
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
    DRLGAN
ArXiv (abs)PDFHTML

Papers citing "Auxiliary Deep Generative Models"

50 / 230 papers shown
Title
Understanding and Improving Virtual Adversarial Training
Understanding and Improving Virtual Adversarial Training
Dongha Kim
Yongchan Choi
Yongdai Kim
GANAAML
30
2
0
15 Sep 2019
Dual Student: Breaking the Limits of the Teacher in Semi-supervised
  Learning
Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning
Zhanghan Ke
Daoye Wang
Qiong Yan
Jimmy S. J. Ren
Rynson W. H. Lau
81
216
0
03 Sep 2019
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural
  Networks
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural Networks
Juan Maroñas
Roberto Paredes Palacios
D. Ramos-Castro
UQCVBDL
102
24
0
23 Aug 2019
Semi-Implicit Graph Variational Auto-Encoders
Semi-Implicit Graph Variational Auto-Encoders
Arman Hasanzadeh
Ehsan Hajiramezanali
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDLGNN
88
132
0
19 Aug 2019
Semi-Supervised Self-Growing Generative Adversarial Networks for Image
  Recognition
Semi-Supervised Self-Growing Generative Adversarial Networks for Image Recognition
Haoqian Wang
Zhiwei Xu
Jun Xu
Wangpeng An
Lei Zhang
Qionghai Dai
GAN
52
8
0
11 Aug 2019
Variational f-divergence Minimization
Variational f-divergence Minimization
Mingtian Zhang
Thomas Bird
Raza Habib
Tianlin Xu
David Barber
FedML
61
29
0
27 Jul 2019
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Bringing Giant Neural Networks Down to Earth with Unlabeled Data
Yehui Tang
Shan You
Chang Xu
Boxin Shi
Chao Xu
85
11
0
13 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
87
20
0
10 Jul 2019
General Control Functions for Causal Effect Estimation from Instrumental
  Variables
General Control Functions for Causal Effect Estimation from Instrumental Variables
A. Puli
Rajesh Ranganath
CML
107
4
0
08 Jul 2019
Exploring Self-Supervised Regularization for Supervised and
  Semi-Supervised Learning
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
Phi Vu Tran
SSL
56
16
0
25 Jun 2019
Variational Sequential Labelers for Semi-Supervised Learning
Variational Sequential Labelers for Semi-Supervised Learning
Mingda Chen
Qingming Tang
Karen Livescu
Kevin Gimpel
SSLDRLBDLVLM
87
39
0
23 Jun 2019
SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder
SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder
Marek Śmieja
Maciej Wołczyk
Jacek Tabor
Bernhard C. Geiger
44
23
0
21 Jun 2019
Weakly Supervised Clustering by Exploiting Unique Class Count
Weakly Supervised Clustering by Exploiting Unique Class Count
Mustafa Umit Oner
H. Lee
Wing-Kin Sung
45
7
0
18 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
247
2,385
0
06 Jun 2019
Hierarchical Importance Weighted Autoencoders
Hierarchical Importance Weighted Autoencoders
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
61
15
0
13 May 2019
Importance Weighted Hierarchical Variational Inference
Importance Weighted Hierarchical Variational Inference
Artem Sobolev
Dmitry Vetrov
BDL
79
29
0
08 May 2019
Adversarial Variational Embedding for Robust Semi-supervised Learning
Adversarial Variational Embedding for Robust Semi-supervised Learning
Xiang Zhang
Lina Yao
Feng Yuan
DRLGAN
64
42
0
07 May 2019
Unsupervised Data Augmentation for Consistency Training
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
163
2,337
0
29 Apr 2019
Improved Conditional VRNNs for Video Prediction
Improved Conditional VRNNs for Video Prediction
Lluis Castrejon
Nicolas Ballas
Aaron Courville
VGenDRL
157
164
0
27 Apr 2019
Deep Generative Models for Reject Inference in Credit Scoring
Deep Generative Models for Reject Inference in Credit Scoring
R. A. Mancisidor
Michael C. Kampffmeyer
K. Aas
Robert Jenssen
BDLFaML
52
51
0
12 Apr 2019
Small Data Challenges in Big Data Era: A Survey of Recent Progress on
  Unsupervised and Semi-Supervised Methods
Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods
Guo-Jun Qi
Jiebo Luo
SSL
63
246
0
27 Mar 2019
Learning about an exponential amount of conditional distributions
Learning about an exponential amount of conditional distributions
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David Lopez-Paz
BDLSSL
68
28
0
22 Feb 2019
STCN: Stochastic Temporal Convolutional Networks
STCN: Stochastic Temporal Convolutional Networks
Emre Aksan
Otmar Hilliges
BDL
59
62
0
18 Feb 2019
Information Losses in Neural Classifiers from Sampling
Information Losses in Neural Classifiers from Sampling
Brandon Foggo
N. Yu
Jie Shi
Yuanqi Gao
63
7
0
15 Feb 2019
Hybrid Models with Deep and Invertible Features
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDLDRL
122
99
0
07 Feb 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDLDRL
112
215
0
06 Feb 2019
Constructing the Matrix Multilayer Perceptron and its Application to the
  VAE
Constructing the Matrix Multilayer Perceptron and its Application to the VAE
Jalil Taghia
Maria Bånkestad
Fredrik Lindsten
Thomas B. Schon
DRL
116
6
0
04 Feb 2019
Semi-Unsupervised Learning: Clustering and Classifying using
  Ultra-Sparse Labels
Semi-Unsupervised Learning: Clustering and Classifying using Ultra-Sparse Labels
M. Willetts
Stephen J. Roberts
Christopher C Holmes
54
4
0
24 Jan 2019
On the Transformation of Latent Space in Autoencoders
On the Transformation of Latent Space in Autoencoders
Jaehoon Cha
Kyeong Soo Kim
Sanghyuk Lee
DiffM
26
5
0
24 Jan 2019
A Novel Variational Autoencoder with Applications to Generative
  Modelling, Classification, and Ordinal Regression
A Novel Variational Autoencoder with Applications to Generative Modelling, Classification, and Ordinal Regression
J. Jaskari
Jyri J. Kivinen
BDLDRL
47
6
0
18 Dec 2018
Classification-Reconstruction Learning for Open-Set Recognition
Classification-Reconstruction Learning for Open-Set Recognition
Ryota Yoshihashi
Wen Shao
Rei Kawakami
Shaodi You
M. Iida
T. Naemura
BDL
88
329
0
11 Dec 2018
Projected BNNs: Avoiding weight-space pathologies by learning latent
  representations of neural network weights
Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights
Melanie F. Pradier
Weiwei Pan
Jiayu Yao
S. Ghosh
Finale Doshi-velez
UQCVBDL
63
10
0
16 Nov 2018
Semi-unsupervised Learning of Human Activity using Deep Generative
  Models
Semi-unsupervised Learning of Human Activity using Deep Generative Models
M. Willetts
Aiden Doherty
Stephen J. Roberts
Chris Holmes
37
3
0
29 Oct 2018
Gaussian Process Prior Variational Autoencoders
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDLCML
77
139
0
28 Oct 2018
Doubly Semi-Implicit Variational Inference
Doubly Semi-Implicit Variational Inference
Dmitry Molchanov
V. Kharitonov
Artem Sobolev
Dmitry Vetrov
BDL
109
40
0
05 Oct 2018
Improving Explorability in Variational Inference with Annealed
  Variational Objectives
Improving Explorability in Variational Inference with Annealed Variational Objectives
Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
DRL
61
48
0
06 Sep 2018
Semi-supervised Learning on Graphs with Generative Adversarial Nets
Semi-supervised Learning on Graphs with Generative Adversarial Nets
Ming Ding
Jie Tang
Jie Zhang
GNNGAN
99
116
0
01 Sep 2018
Unbiased Implicit Variational Inference
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
142
57
0
06 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
112
16
0
05 Aug 2018
Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality
  Emotional Data
Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data
Changde Du
Changying Du
Hao Wang
Jinpeng Li
Wei-Long Zheng
Bao-Liang Lu
Huiguang He
89
68
0
27 Jul 2018
Recent Advances in Deep Learning: An Overview
Recent Advances in Deep Learning: An Overview
Matiur Rahman Minar
Jibon Naher
VLM
111
117
0
21 Jul 2018
Manifold Adversarial Learning
Manifold Adversarial Learning
Shufei Zhang
Kaizhu Huang
Jianke Zhu
Yang Liu
OODAAML
63
5
0
16 Jul 2018
Deep Generative Model using Unregularized Score for Anomaly Detection
  with Heterogeneous Complexity
Deep Generative Model using Unregularized Score for Anomaly Detection with Heterogeneous Complexity
Takashi Matsubara
Kenta Hama
Ryosuke Tachibana
K. Uehara
66
29
0
16 Jul 2018
Excavate Condition-invariant Space by Intrinsic Encoder
Excavate Condition-invariant Space by Intrinsic Encoder
Jian Xu
Chunheng Wang
Cunzhao Shi
Baihua Xiao
BDL
31
1
0
29 Jun 2018
Controllable Semantic Image Inpainting
Controllable Semantic Image Inpainting
Jin Xu
Yee Whye Teh
56
7
0
15 Jun 2018
Semi-Supervised Learning via Compact Latent Space Clustering
Semi-Supervised Learning via Compact Latent Space Clustering
Konstantinos Kamnitsas
Daniel Coelho De Castro
Loic Le Folgoc
Ian Walker
Ryutaro Tanno
Daniel Rueckert
Ben Glocker
A. Criminisi
A. Nori
SSL
98
89
0
07 Jun 2018
Generative Modeling by Inclusive Neural Random Fields with Applications
  in Image Generation and Anomaly Detection
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
107
30
0
01 Jun 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
97
128
0
28 May 2018
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by
  Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Neal Jean
Sang Michael Xie
Stefano Ermon
BDLSSL
92
77
0
26 May 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
81
10
0
23 May 2018
Previous
12345
Next