Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.05179
Cited By
Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation
16 February 2016
B. Scellier
Yoshua Bengio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation"
50 / 107 papers shown
Title
Learning on Arbitrary Graph Topologies via Predictive Coding
Tommaso Salvatori
Luca Pinchetti
Beren Millidge
Yuhang Song
Tianyi Bao
Rafal Bogacz
Thomas Lukasiewicz
40
33
0
31 Jan 2022
Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass
Giorgia Dellaferrera
Gabriel Kreiman
34
53
0
27 Jan 2022
Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time
Bojian Yin
Federico Corradi
S. Bohté
43
61
0
20 Dec 2021
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural Networks
Huu Le
R. Høier
Che-Tsung Lin
Christopher Zach
55
17
0
06 Dec 2021
Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons
Paul Haider
B. Ellenberger
Laura Kriener
Jakob Jordan
Walter Senn
Mihai A. Petrovici
27
24
0
27 Oct 2021
An energy-based model for neuro-symbolic reasoning on knowledge graphs
Dominik Dold
J. Garrido
AI4CE
30
8
0
04 Oct 2021
Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium Propagation
Sangwoo Park
Osvaldo Simeone
47
8
0
01 Oct 2021
Capturing the objects of vision with neural networks
B. Peters
N. Kriegeskorte
OCL
33
56
0
07 Sep 2021
SoftHebb: Bayesian Inference in Unsupervised Hebbian Soft Winner-Take-All Networks
Timoleon Moraitis
Dmitry Toichkin
Adrien Journé
Yansong Chua
Qinghai Guo
AAML
BDL
68
28
0
12 Jul 2021
Backprop-Free Reinforcement Learning with Active Neural Generative Coding
Alexander Ororbia
A. Mali
41
15
0
10 Jul 2021
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
28
7
0
30 Jun 2021
On the relationship between predictive coding and backpropagation
Robert Rosenbaum
38
28
0
20 Jun 2021
Training Dynamical Binary Neural Networks with Equilibrium Propagation
Jérémie Laydevant
M. Ernoult
D. Querlioz
Julie Grollier
26
16
0
16 Mar 2021
Reverse Differentiation via Predictive Coding
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
30
26
0
08 Mar 2021
Predictive Coding Can Do Exact Backpropagation on Convolutional and Recurrent Neural Networks
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
29
24
0
05 Mar 2021
The Yin-Yang dataset
Laura Kriener
Julian Goltz
Mihai A. Petrovici
3DH
35
19
0
16 Feb 2021
Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods
Shiyu Duan
José C. Príncipe
MQ
38
3
0
09 Jan 2021
Improved Contrastive Divergence Training of Energy Based Models
Yilun Du
Shuang Li
J. Tenenbaum
Igor Mordatch
43
139
0
02 Dec 2020
Energy-Based Models for Continual Learning
Shuang Li
Yilun Du
Gido M. van de Ven
Igor Mordatch
32
42
0
24 Nov 2020
Local plasticity rules can learn deep representations using self-supervised contrastive predictions
Bernd Illing
Jean-Paul Ventura
G. Bellec
W. Gerstner
SSL
DRL
59
70
0
16 Oct 2020
Why Layer-Wise Learning is Hard to Scale-up and a Possible Solution via Accelerated Downsampling
Wenchi Ma
Miao Yu
Kaidong Li
Guanghui Wang
17
5
0
15 Oct 2020
EqSpike: Spike-driven Equilibrium Propagation for Neuromorphic Implementations
Erwann Martin
M. Ernoult
Jérémie Laydevant
Shuai-shuai Li
D. Querlioz
Teodora Petrisor
Julie Grollier
27
49
0
15 Oct 2020
Tuning Convolutional Spiking Neural Network with Biologically-plausible Reward Propagation
Tielin Zhang
Shuncheng Jia
Xiang Cheng
Bo Xu
36
48
0
09 Oct 2020
Deriving Differential Target Propagation from Iterating Approximate Inverses
Yoshua Bengio
20
25
0
29 Jul 2020
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
27
34
0
12 Jun 2020
GAIT-prop: A biologically plausible learning rule derived from backpropagation of error
Nasir Ahmad
Marcel van Gerven
L. Ambrogioni
AAML
20
25
0
11 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
32
118
0
07 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
47
98
0
05 Jun 2020
Equilibrium Propagation with Continual Weight Updates
M. Ernoult
Julie Grollier
D. Querlioz
Yoshua Bengio
B. Scellier
14
38
0
29 Apr 2020
Truncated Inference for Latent Variable Optimization Problems: Application to Robust Estimation and Learning
Christopher Zach
Huu Le
36
4
0
12 Mar 2020
Synaptic Metaplasticity in Binarized Neural Networks
Axel Laborieux
M. Ernoult
T. Hirtzlin
D. Querlioz
CLL
28
62
0
07 Mar 2020
Two Routes to Scalable Credit Assignment without Weight Symmetry
D. Kunin
Aran Nayebi
Javier Sagastuy-Breña
Surya Ganguli
Jonathan M. Bloom
Daniel L. K. Yamins
36
32
0
28 Feb 2020
Contrastive Similarity Matching for Supervised Learning
Shanshan Qin
N. Mudur
Cengiz Pehlevan
SSL
DRL
22
1
0
24 Feb 2020
Large-Scale Gradient-Free Deep Learning with Recursive Local Representation Alignment
Alexander Ororbia
A. Mali
Daniel Kifer
C. Lee Giles
23
2
0
10 Feb 2020
Ghost Units Yield Biologically Plausible Backprop in Deep Neural Networks
Thomas Mesnard
Gaetan Vignoud
João Sacramento
Walter Senn
Yoshua Bengio
27
7
0
15 Nov 2019
Making Predictive Coding Networks Generative
Jeff Orchard
Wei Sun
14
1
0
26 Oct 2019
Spike-based causal inference for weight alignment
Jordan Guerguiev
Konrad Paul Kording
Blake A. Richards
CML
25
23
0
03 Oct 2019
Spiking Neural Predictive Coding for Continual Learning from Data Streams
Alexander Ororbia
25
25
0
23 Aug 2019
Resonant Machine Learning Based on Complex Growth Transform Dynamical Systems
Oindrila Chatterjee
S. Chakrabartty
27
7
0
15 Aug 2019
Putting An End to End-to-End: Gradient-Isolated Learning of Representations
Sindy Löwe
Peter O'Connor
Bastiaan S. Veeling
SSL
14
143
0
28 May 2019
Contrastive Learning for Lifted Networks
Christopher Zach
V. Estellers
SSL
17
12
0
07 May 2019
Biologically plausible deep learning -- but how far can we go with shallow networks?
Bernd Illing
W. Gerstner
Johanni Brea
30
94
0
27 Feb 2019
Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning
Frederik Benzing
M. Gauy
Asier Mujika
A. Martinsson
Angelika Steger
23
23
0
11 Feb 2019
Training Neural Networks with Local Error Signals
Arild Nøkland
L. Eidnes
32
226
0
20 Jan 2019
A Biologically Plausible Learning Rule for Deep Learning in the Brain
Isabella Pozzi
Michael Felsberg
Fahad Shahbaz Khan
AI4CE
12
31
0
05 Nov 2018
Dendritic cortical microcircuits approximate the backpropagation algorithm
João Sacramento
Rui Ponte Costa
Yoshua Bengio
Walter Senn
36
308
0
26 Oct 2018
Continual Learning of Recurrent Neural Networks by Locally Aligning Distributed Representations
Alexander Ororbia
A. Mali
C. Lee Giles
Daniel Kifer
29
63
0
17 Oct 2018
Error Forward-Propagation: Reusing Feedforward Connections to Propagate Errors in Deep Learning
Adam A. Kohan
E. Rietman
H. Siegelmann
58
24
0
09 Aug 2018
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
40
240
0
12 Jul 2018
Unsupervised Learning by Competing Hidden Units
Dmitry Krotov
J. Hopfield
SSL
20
166
0
26 Jun 2018
Previous
1
2
3
Next