Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
v1
v2
v3 (latest)
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,973 papers shown
Title
AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Eric Wallace
Jens Tuyls
Junlin Wang
Sanjay Subramanian
Matt Gardner
Sameer Singh
MILM
85
138
0
19 Sep 2019
Representation Learning for Electronic Health Records
W. Weng
Peter Szolovits
76
19
0
19 Sep 2019
InterpretML: A Unified Framework for Machine Learning Interpretability
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
166
490
0
19 Sep 2019
Slices of Attention in Asynchronous Video Job Interviews
Léo Hemamou
G. Felhi
Jean-Claude Martin
Chloé Clavel
37
21
0
19 Sep 2019
Large-scale representation learning from visually grounded untranscribed speech
Gabriel Ilharco
Yuan Zhang
Jason Baldridge
SSL
82
61
0
19 Sep 2019
Semantically Interpretable Activation Maps: what-where-how explanations within CNNs
Diego Marcos
Sylvain Lobry
D. Tuia
FAtt
MILM
59
28
0
18 Sep 2019
The Explanation Game: Explaining Machine Learning Models Using Shapley Values
Luke Merrick
Ankur Taly
FAtt
TDI
47
33
0
17 Sep 2019
X-ToM: Explaining with Theory-of-Mind for Gaining Justified Human Trust
Arjun Reddy Akula
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
62
18
0
15 Sep 2019
Co-Attentive Cross-Modal Deep Learning for Medical Evidence Synthesis and Decision Making
Devin Taylor
Simeon E. Spasov
Pietro Lio
31
5
0
13 Sep 2019
Shapley Interpretation and Activation in Neural Networks
Yadong Li
Xin Cui
TDI
FAtt
LLMSV
37
3
0
13 Sep 2019
New Perspective of Interpretability of Deep Neural Networks
Masanari Kimura
Masayuki Tanaka
AAML
FAtt
FaML
AI4CE
35
6
0
12 Sep 2019
FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency
Kacper Sokol
Raúl Santos-Rodríguez
Peter A. Flach
55
37
0
11 Sep 2019
Towards Safe Machine Learning for CPS: Infer Uncertainty from Training Data
Xiaozhe Gu
Arvind Easwaran
54
30
0
11 Sep 2019
NormLime: A New Feature Importance Metric for Explaining Deep Neural Networks
Isaac Ahern
Adam Noack
Luis Guzman-Nateras
Dejing Dou
Boyang Albert Li
Jun Huan
FAtt
55
40
0
10 Sep 2019
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
61
11
0
09 Sep 2019
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
159
74
0
08 Sep 2019
Explainable Deep Learning for Video Recognition Tasks: A Framework & Recommendations
Liam Hiley
Alun D. Preece
Y. Hicks
XAI
34
15
0
07 Sep 2019
Equalizing Recourse across Groups
Vivek Gupta
Pegah Nokhiz
Chitradeep Dutta Roy
Suresh Venkatasubramanian
FaML
65
72
0
07 Sep 2019
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
76
392
0
06 Sep 2019
DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning
Theo Jaunet
Romain Vuillemot
Christian Wolf
HAI
128
36
0
06 Sep 2019
Testing Deep Learning Models for Image Analysis Using Object-Relevant Metamorphic Relations
Yongqiang Tian
Shiqing Ma
Ming Wen
Yepang Liu
Shing-Chi Cheung
Xinming Zhang
VLM
54
5
0
06 Sep 2019
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
228
315
0
05 Sep 2019
ALIME: Autoencoder Based Approach for Local Interpretability
Sharath M. Shankaranarayana
D. Runje
FAtt
63
105
0
04 Sep 2019
Towards Interpretable Polyphonic Transcription with Invertible Neural Networks
Rainer Kelz
Gerhard Widmer
41
15
0
04 Sep 2019
Understanding Bias in Machine Learning
Jindong Gu
Daniela Oelke
AI4CE
FaML
31
22
0
02 Sep 2019
Human-grounded Evaluations of Explanation Methods for Text Classification
Piyawat Lertvittayakumjorn
Francesca Toni
FAtt
90
67
0
29 Aug 2019
Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks
Maximilian Pichler
V. Boreux
A. Klein
M. Schleuning
F. Hartig
42
101
0
26 Aug 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
115
55
0
24 Aug 2019
Fairness in Deep Learning: A Computational Perspective
Mengnan Du
Fan Yang
Na Zou
Helen Zhou
FaML
FedML
66
234
0
23 Aug 2019
The many Shapley values for model explanation
Mukund Sundararajan
A. Najmi
TDI
FAtt
70
644
0
22 Aug 2019
Saliency Methods for Explaining Adversarial Attacks
Jindong Gu
Volker Tresp
FAtt
AAML
71
30
0
22 Aug 2019
TabNet: Attentive Interpretable Tabular Learning
Sercan O. Arik
Tomas Pfister
LMTD
222
1,381
0
20 Aug 2019
Fine-grained Sentiment Analysis with Faithful Attention
Ruiqi Zhong
Steven Shao
Kathleen McKeown
103
50
0
19 Aug 2019
Fairness Issues in AI Systems that Augment Sensory Abilities
Leah Findlater
Steven M. Goodman
Yuhang Zhao
Shiri Azenkot
Margot Hanley
40
25
0
16 Aug 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
91
21
0
15 Aug 2019
Visualizing Image Content to Explain Novel Image Discovery
Jake H. Lee
K. Wagstaff
29
3
0
14 Aug 2019
Requirements Engineering for Machine Learning: Perspectives from Data Scientists
Andreas Vogelsang
Markus Borg
70
164
0
13 Aug 2019
Learning Credible Deep Neural Networks with Rationale Regularization
Mengnan Du
Ninghao Liu
Fan Yang
Helen Zhou
FaML
98
46
0
13 Aug 2019
Regional Tree Regularization for Interpretability in Black Box Models
Mike Wu
S. Parbhoo
M. C. Hughes
R. Kindle
Leo Anthony Celi
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
76
38
0
13 Aug 2019
A Survey of Challenges and Opportunities in Sensing and Analytics for Cardiovascular Disorders
N. Hurley
E. Spatz
H. Krumholz
R. Jafari
B. Mortazavi
41
1
0
12 Aug 2019
LoRMIkA: Local rule-based model interpretability with k-optimal associations
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
Wray Buntine
90
31
0
11 Aug 2019
Neural Image Compression and Explanation
Xiang Li
Shihao Ji
25
10
0
09 Aug 2019
Measurable Counterfactual Local Explanations for Any Classifier
Adam White
Artur Garcez
FAtt
70
98
0
08 Aug 2019
Investigating Decision Boundaries of Trained Neural Networks
Roozbeh Yousefzadeh
D. O’Leary
AAML
48
22
0
07 Aug 2019
Advocacy Learning: Learning through Competition and Class-Conditional Representations
Ian Fox
Jenna Wiens
SSL
32
2
0
07 Aug 2019
Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks
Jörg Wagner
Jan M. Köhler
Tobias Gindele
Leon Hetzel
Thaddäus Wiedemer
Sven Behnke
AAML
FAtt
98
122
0
07 Aug 2019
Knowledge Consistency between Neural Networks and Beyond
Ruofan Liang
Tianlin Li
Longfei Li
Jingchao Wang
Quanshi Zhang
76
28
0
05 Aug 2019
Semi-supervised Thai Sentence Segmentation Using Local and Distant Word Representations
Chanatip Saetia
Ekapol Chuangsuwanich
Tawunrat Chalothorn
P. Vateekul
74
5
0
04 Aug 2019
Smooth Grad-CAM++: An Enhanced Inference Level Visualization Technique for Deep Convolutional Neural Network Models
Daniel Omeiza
Skyler Speakman
C. Cintas
Komminist Weldemariam
FAtt
72
218
0
03 Aug 2019
TABOR: A Highly Accurate Approach to Inspecting and Restoring Trojan Backdoors in AI Systems
Wenbo Guo
Lun Wang
Masashi Sugiyama
Min Du
Basel Alomair
86
230
0
02 Aug 2019
Previous
1
2
3
...
88
89
90
...
98
99
100
Next