Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
v1
v2
v3 (latest)
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,966 papers shown
Title
TIP: Typifying the Interpretability of Procedures
Amit Dhurandhar
Vijay Iyengar
Ronny Luss
Karthikeyan Shanmugam
73
36
0
09 Jun 2017
Context-aware, Adaptive and Scalable Android Malware Detection through Online Learning (extended version)
A. Narayanan
Mahinthan Chandramohan
Lihui Chen
Yang Liu
49
87
0
03 Jun 2017
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric Xing
CML
99
83
0
29 May 2017
Detecting and Explaining Crisis
Rohan Kshirsagar
R. Morris
Samuel R. Bowman
36
28
0
26 May 2017
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
132
173
0
23 May 2017
Explaining Transition Systems through Program Induction
Svetlin Penkov
S. Ramamoorthy
66
5
0
23 May 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.2K
22,232
0
22 May 2017
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
72
595
0
22 May 2017
Induction of Interpretable Possibilistic Logic Theories from Relational Data
Ondrej Kuzelka
Jesse Davis
Steven Schockaert
NAI
128
12
0
19 May 2017
Detecting Statistical Interactions from Neural Network Weights
Michael Tsang
Dehua Cheng
Yan Liu
72
192
0
14 May 2017
A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations
Josua Krause
Aritra Dasgupta
Jordan Swartz
Yindalon Aphinyanagphongs
E. Bertini
FAtt
71
96
0
04 May 2017
Translating Neuralese
Jacob Andreas
Anca Dragan
Dan Klein
142
58
0
23 Apr 2017
Interpretable 3D Human Action Analysis with Temporal Convolutional Networks
Tae Soo Kim
A. Reiter
3DH
51
602
0
14 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
86
1,527
0
11 Apr 2017
PreCog: Improving Crowdsourced Data Quality Before Acquisition
H. Nilforoshan
Jiannan Wang
Eugene Wu
24
3
0
07 Apr 2017
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
Minsuk Kahng
Pierre Yves Andrews
Aditya Kalro
Duen Horng Chau
HAI
96
324
0
06 Apr 2017
A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization
A. Narayanan
Mahinthan Chandramohan
Lihui Chen
Yang Liu
AAML
50
86
0
06 Apr 2017
It Takes Two to Tango: Towards Theory of AI's Mind
Arjun Chandrasekaran
Deshraj Yadav
Prithvijit Chattopadhyay
Viraj Prabhu
Devi Parikh
108
54
0
03 Apr 2017
Comparing Rule-Based and Deep Learning Models for Patient Phenotyping
Sebastian Gehrmann
Franck Dernoncourt
Yeran Li
Eric T. Carlson
Joy T. Wu
...
J. Foote
E. Moseley
David W. Grant
P. Tyler
Leo Anthony Celi
81
41
0
25 Mar 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
232
2,913
0
14 Mar 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
143
594
0
10 Mar 2017
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly
Ethan R. Elenberg
A. Dimakis
Moran Feldman
Amin Karbasi
92
89
0
08 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
213
6,035
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
424
3,828
0
28 Feb 2017
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
Upol Ehsan
Brent Harrison
Larry Chan
Mark O. Riedl
139
221
0
25 Feb 2017
EVE: Explainable Vector Based Embedding Technique Using Wikipedia
M. A. Qureshi
Derek Greene
83
34
0
22 Feb 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
304
1,548
0
25 Jan 2017
Summoning Demons: The Pursuit of Exploitable Bugs in Machine Learning
Rock Stevens
H. Aggarwal
Himani Arora
Sanghyun Hong
M. Hicks
Chetan Arora
SILM
AAML
54
18
0
17 Jan 2017
Deep Learning for Computational Chemistry
Garrett B. Goh
Nathan Oken Hodas
Abhinav Vishnu
AI4CE
94
679
0
17 Jan 2017
Identifying Best Interventions through Online Importance Sampling
Rajat Sen
Karthikeyan Shanmugam
A. Dimakis
Sanjay Shakkottai
96
73
0
10 Jan 2017
"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
77
288
0
23 Dec 2016
Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets
L. Micallef
Iiris Sundin
Pekka Marttinen
Muhammad Ammad-ud-din
Tomi Peltola
Marta Soare
Giulio Jacucci
Samuel Kaski
74
28
0
07 Dec 2016
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
Yash Goyal
Tejas Khot
D. Summers-Stay
Dhruv Batra
Devi Parikh
CoGe
372
3,274
0
02 Dec 2016
Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation
Wojciech Samek
G. Montavon
Alexander Binder
Sebastian Lapuschkin
K. Müller
FAtt
AI4CE
94
48
0
24 Nov 2016
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
Vernon J. Lawhern
Amelia J. Solon
Nicholas R. Waytowich
Stephen M. Gordon
C. Hung
Brent Lance
OOD
159
2,924
0
23 Nov 2016
Interpretation of Prediction Models Using the Input Gradient
Yotam Hechtlinger
FaML
AI4CE
FAtt
77
85
0
23 Nov 2016
Programs as Black-Box Explanations
Sameer Singh
Marco Tulio Ribeiro
Carlos Guestrin
FAtt
68
55
0
22 Nov 2016
An unexpected unity among methods for interpreting model predictions
Scott M. Lundberg
Su-In Lee
FAtt
103
110
0
22 Nov 2016
Grad-CAM: Why did you say that?
Ramprasaath R. Selvaraju
Abhishek Das
Ramakrishna Vedantam
Michael Cogswell
Devi Parikh
Dhruv Batra
FAtt
100
477
0
22 Nov 2016
Mapping chemical performance on molecular structures using locally interpretable explanations
Leanne S. Whitmore
Anthe George
Corey M. Hudson
FAtt
57
12
0
22 Nov 2016
"Influence Sketching": Finding Influential Samples In Large-Scale Regressions
M. Wojnowicz
Ben Cruz
Xuan Zhao
Brian Wallace
Matt Wolff
Jay Luan
Caleb Crable
TDI
89
32
0
17 Nov 2016
Nothing Else Matters: Model-Agnostic Explanations By Identifying Prediction Invariance
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
68
64
0
17 Nov 2016
Low-rank Bilinear Pooling for Fine-Grained Classification
Shu Kong
Charless C. Fowlkes
96
347
0
16 Nov 2016
Link Prediction using Embedded Knowledge Graphs
Yelong Shen
Po-Sen Huang
Ming-Wei Chang
Jianfeng Gao
90
26
0
14 Nov 2016
Gradients of Counterfactuals
Mukund Sundararajan
Ankur Taly
Qiqi Yan
FAtt
101
104
0
08 Nov 2016
Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration
Himabindu Lakkaraju
Ece Kamar
R. Caruana
Eric Horvitz
101
152
0
28 Oct 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
252
945
0
21 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
373
20,193
0
07 Oct 2016
A deep learning model for estimating story points
Morakot Choetkiertikul
Hoa Dam
T. Tran
Trang Pham
A. Ghose
Tim Menzies
70
173
0
02 Sep 2016
Towards Transparent AI Systems: Interpreting Visual Question Answering Models
Yash Goyal
Akrit Mohapatra
Devi Parikh
Dhruv Batra
65
74
0
31 Aug 2016
Previous
1
2
3
...
100
98
99
Next