Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04474
Cited By
Generalization Properties of Learning with Random Features
14 February 2016
Alessandro Rudi
Lorenzo Rosasco
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalization Properties of Learning with Random Features"
50 / 62 papers shown
Title
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
27
0
0
13 May 2025
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
109
0
0
06 May 2025
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
26
1
0
23 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
42
0
0
24 Aug 2024
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
54
0
0
16 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
25
5
0
30 Jun 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
40
4
0
14 Jun 2024
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Licong Lin
Jingfeng Wu
Sham Kakade
Peter L. Bartlett
Jason D. Lee
LRM
38
15
0
12 Jun 2024
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
46
1
0
21 Feb 2024
Random features models: a way to study the success of naive imputation
Alexis Ayme
Claire Boyer Lpsm
Aymeric Dieuleveut
Erwan Scornet
22
3
0
06 Feb 2024
Potential and limitations of random Fourier features for dequantizing quantum machine learning
R. Sweke
Erik Recio
Sofiene Jerbi
Elies Gil-Fuster
Bryce Fuller
Jens Eisert
Johannes Jakob Meyer
22
12
0
20 Sep 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
27
12
0
26 May 2023
When is Importance Weighting Correction Needed for Covariate Shift Adaptation?
Davit Gogolashvili
Matteo Zecchin
Motonobu Kanagawa
Marios Kountouris
Maurizio Filippone
30
6
0
07 Mar 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
11
1
0
17 Jan 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte
Alessandro Rudi
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
18
6
0
16 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
Esha Saha
L. Ho
Giang Tran
36
5
0
11 Nov 2022
RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features
Mateus P. Otto
Rafael Izbicki
27
1
0
11 Nov 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
164
67
0
27 Oct 2022
Importance Weighting Correction of Regularized Least-Squares for Covariate and Target Shifts
Davit Gogolashvili
OOD
18
1
0
18 Oct 2022
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
36
1
0
01 Oct 2022
Fast Kernel Methods for Generic Lipschitz Losses via
p
p
p
-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
19
5
0
08 Jun 2022
Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable
Promit Ghosal
Srinath Mahankali
Yihang Sun
MLT
19
4
0
24 May 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
20
6
0
14 Apr 2022
SRMD: Sparse Random Mode Decomposition
Nicholas Richardson
Hayden Schaeffer
Giang Tran
21
11
0
12 Apr 2022
Information Theory with Kernel Methods
Francis R. Bach
23
40
0
17 Feb 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
38
14
0
06 Feb 2022
An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings
M. Scetbon
Laurent Meunier
Yaniv Romano
25
10
0
28 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
35
12
0
21 Oct 2021
Sampling from Arbitrary Functions via PSD Models
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
14
10
0
20 Oct 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
11
35
0
14 Jun 2021
Statistical Optimality and Computational Efficiency of Nyström Kernel PCA
Nicholas Sterge
Bharath K. Sriperumbudur
25
8
0
19 May 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Denoising Score Matching with Random Fourier Features
Olga Tsymboi
Yermek Kapushev
Evgeny Burnaev
Ivan V. Oseledets
31
1
0
13 Jan 2021
Probabilistic Load Forecasting Based on Adaptive Online Learning
Verónica Álvarez
Santiago Mazuelas
Jose A. Lozano
11
61
0
30 Nov 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
23
86
0
30 Sep 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
18
61
0
03 Aug 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
34
32
0
18 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
34
172
0
23 Apr 2020
Deep Randomized Neural Networks
Claudio Gallicchio
Simone Scardapane
OOD
36
61
0
27 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
18
82
0
19 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
11
20
0
28 Jan 2020
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature Mapping
Shusen Wang
23
2
0
24 Sep 2019
Graph Random Neural Features for Distance-Preserving Graph Representations
Daniele Zambon
C. Alippi
L. Livi
16
1
0
09 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
39
626
0
14 Aug 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
13
241
0
27 Apr 2019
Risk Convergence of Centered Kernel Ridge Regression with Large Dimensional Data
Khalil Elkhalil
A. Kammoun
Xiangliang Zhang
Mohamed-Slim Alouini
Tareq Al-Naffouri
11
7
0
19 Apr 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
19
16
0
22 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
25
1,610
0
28 Dec 2018
1
2
Next