ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.04133
  4. Cited By
Deep Gaussian Processes for Regression using Approximate Expectation
  Propagation

Deep Gaussian Processes for Regression using Approximate Expectation Propagation

12 February 2016
T. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
    BDL
ArXivPDFHTML

Papers citing "Deep Gaussian Processes for Regression using Approximate Expectation Propagation"

11 / 11 papers shown
Title
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
58
25
0
23 May 2016
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
40
131
0
19 Nov 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
110
115
0
12 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
470
9,233
0
06 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
813
149,474
0
22 Dec 2014
Nested Variational Compression in Deep Gaussian Processes
Nested Variational Compression in Deep Gaussian Processes
J. Hensman
Neil D. Lawrence
BDL
34
67
0
03 Dec 2014
Avoiding pathologies in very deep networks
Avoiding pathologies in very deep networks
David Duvenaud
Oren Rippel
Ryan P. Adams
Zoubin Ghahramani
ODL
BDL
79
158
0
24 Feb 2014
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
53
604
0
18 Feb 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
73
1,178
0
02 Nov 2012
Expectation Propagation in Gaussian Process Dynamical Systems: Extended
  Version
Expectation Propagation in Gaussian Process Dynamical Systems: Extended Version
M. Deisenroth
S. Mohamed
51
45
0
12 Jul 2012
1