Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04133
Cited By
Deep Gaussian Processes for Regression using Approximate Expectation Propagation
12 February 2016
T. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gaussian Processes for Regression using Approximate Expectation Propagation"
11 / 11 papers shown
Title
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
58
25
0
23 May 2016
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
40
131
0
19 Nov 2015
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
110
115
0
12 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
470
9,233
0
06 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
813
149,474
0
22 Dec 2014
Nested Variational Compression in Deep Gaussian Processes
J. Hensman
Neil D. Lawrence
BDL
34
67
0
03 Dec 2014
Avoiding pathologies in very deep networks
David Duvenaud
Oren Rippel
Ryan P. Adams
Zoubin Ghahramani
ODL
BDL
79
158
0
24 Feb 2014
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
53
604
0
18 Feb 2013
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
73
1,178
0
02 Nov 2012
Expectation Propagation in Gaussian Process Dynamical Systems: Extended Version
M. Deisenroth
S. Mohamed
51
45
0
12 Jul 2012
1