ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.03616
  4. Cited By
Multifaceted Feature Visualization: Uncovering the Different Types of
  Features Learned By Each Neuron in Deep Neural Networks

Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks

11 February 2016
Anh Totti Nguyen
J. Yosinski
Jeff Clune
ArXivPDFHTML

Papers citing "Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks"

50 / 59 papers shown
Title
Towards Combinatorial Interpretability of Neural Computation
Towards Combinatorial Interpretability of Neural Computation
Micah Adler
Dan Alistarh
Nir Shavit
FAtt
133
1
0
10 Apr 2025
AI-Assisted Decision Making with Human Learning
AI-Assisted Decision Making with Human Learning
Gali Noti
Kate Donahue
Jon M. Kleinberg
Sigal Oren
131
0
0
18 Feb 2025
Flow AM: Generating Point Cloud Global Explanations by Latent Alignment
Flow AM: Generating Point Cloud Global Explanations by Latent Alignment
Hanxiao Tan
41
1
0
29 Apr 2024
What Sketch Explainability Really Means for Downstream Tasks
What Sketch Explainability Really Means for Downstream Tasks
Hmrishav Bandyopadhyay
Pinaki Nath Chowdhury
A. Bhunia
Aneeshan Sain
Tao Xiang
Yi-Zhe Song
30
4
0
14 Mar 2024
Explaining Deep Face Algorithms through Visualization: A Survey
Explaining Deep Face Algorithms through Visualization: A Survey
Thrupthi Ann
S. M. I. C. V. Balasubramanian
M. Jawahar
CVBM
34
1
0
26 Sep 2023
Understanding Activation Patterns in Artificial Neural Networks by
  Exploring Stochastic Processes
Understanding Activation Patterns in Artificial Neural Networks by Exploring Stochastic Processes
S. Lehmler
Muhammad Saif-ur-Rehman
Tobias Glasmachers
Ioannis Iossifidis
27
0
0
01 Aug 2023
Uncovering Unique Concept Vectors through Latent Space Decomposition
Uncovering Unique Concept Vectors through Latent Space Decomposition
Mara Graziani
Laura Mahony
An-phi Nguyen
Henning Muller
Vincent Andrearczyk
43
4
0
13 Jul 2023
Causal Analysis for Robust Interpretability of Neural Networks
Causal Analysis for Robust Interpretability of Neural Networks
Ola Ahmad
Nicolas Béreux
Loïc Baret
V. Hashemi
Freddy Lecue
CML
29
3
0
15 May 2023
Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
  on AI-based Recruitment
Human-Centric Multimodal Machine Learning: Recent Advances and Testbed on AI-based Recruitment
Alejandro Peña
Ignacio Serna
Aythami Morales
Julian Fierrez
Alfonso Ortega
Ainhoa Herrarte
Manuel Alcántara
J. Ortega-Garcia
FaML
25
34
0
13 Feb 2023
Contrastive Learning and the Emergence of Attributes Associations
Contrastive Learning and the Emergence of Attributes Associations
D. Nissani
16
1
0
12 Feb 2023
Interpreting Neural Networks through the Polytope Lens
Interpreting Neural Networks through the Polytope Lens
Sid Black
Lee D. Sharkey
Léo Grinsztajn
Eric Winsor
Daniel A. Braun
...
Kip Parker
Carlos Ramón Guevara
Beren Millidge
Gabriel Alfour
Connor Leahy
FAtt
MILM
31
22
0
22 Nov 2022
Data-Centric Debugging: mitigating model failures via targeted data
  collection
Data-Centric Debugging: mitigating model failures via targeted data collection
Sahil Singla
Atoosa Malemir Chegini
Mazda Moayeri
Soheil Feiz
27
4
0
17 Nov 2022
Safety Assessment for Autonomous Systems' Perception Capabilities
Safety Assessment for Autonomous Systems' Perception Capabilities
J. Molloy
John McDermid
29
4
0
17 Aug 2022
Reconstructing Training Data from Trained Neural Networks
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
DORA: Exploring Outlier Representations in Deep Neural Networks
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
27
12
0
09 Jun 2022
Concept Evolution in Deep Learning Training: A Unified Interpretation
  Framework and Discoveries
Concept Evolution in Deep Learning Training: A Unified Interpretation Framework and Discoveries
Haekyu Park
Seongmin Lee
Benjamin Hoover
Austin P. Wright
Omar Shaikh
Rahul Duggal
Nilaksh Das
Kevin Li
Judy Hoffman
Duen Horng Chau
26
2
0
30 Mar 2022
Visualizing Global Explanations of Point Cloud DNNs
Visualizing Global Explanations of Point Cloud DNNs
Hanxiao Tan
3DPC
45
7
0
17 Mar 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN
  Interpretability
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability
Sílvia Casacuberta
Esra Suel
Seth Flaxman
FAtt
21
1
0
31 Dec 2021
DeepAID: Interpreting and Improving Deep Learning-based Anomaly
  Detection in Security Applications
DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications
Dongqi Han
Zhiliang Wang
Wenqi Chen
Ying Zhong
Su Wang
Han Zhang
Jiahai Yang
Xingang Shi
Xia Yin
AAML
24
76
0
23 Sep 2021
IFBiD: Inference-Free Bias Detection
IFBiD: Inference-Free Bias Detection
Ignacio Serna
Daniel DeAlcala
Aythami Morales
Julian Fierrez
J. Ortega-Garcia
CVBM
39
11
0
09 Sep 2021
NeuroCartography: Scalable Automatic Visual Summarization of Concepts in
  Deep Neural Networks
NeuroCartography: Scalable Automatic Visual Summarization of Concepts in Deep Neural Networks
Haekyu Park
Nilaksh Das
Rahul Duggal
Austin P. Wright
Omar Shaikh
Fred Hohman
Duen Horng Chau
HAI
19
25
0
29 Aug 2021
Explaining Bayesian Neural Networks
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
34
25
0
23 Aug 2021
Inverting and Understanding Object Detectors
Inverting and Understanding Object Detectors
Ang Cao
Justin Johnson
ObjD
18
3
0
26 Jun 2021
Feature Alignment as a Generative Process
Feature Alignment as a Generative Process
T. S. Farias
Jonas Maziero
DiffM
BDL
21
1
0
23 Jun 2021
Explainable Adversarial Attacks in Deep Neural Networks Using Activation
  Profiles
Explainable Adversarial Attacks in Deep Neural Networks Using Activation Profiles
G. Cantareira
R. Mello
F. Paulovich
AAML
24
9
0
18 Mar 2021
Convolutional Neural Network Interpretability with General Pattern
  Theory
Convolutional Neural Network Interpretability with General Pattern Theory
Erico Tjoa
Cuntai Guan
FAtt
AI4CE
18
6
0
05 Feb 2021
Understanding Failures of Deep Networks via Robust Feature Extraction
Understanding Failures of Deep Networks via Robust Feature Extraction
Sahil Singla
Besmira Nushi
S. Shah
Ece Kamar
Eric Horvitz
FAtt
28
83
0
03 Dec 2020
Exemplary Natural Images Explain CNN Activations Better than
  State-of-the-Art Feature Visualization
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
39
7
0
23 Oct 2020
Survey of XAI in digital pathology
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
14
56
0
14 Aug 2020
Visualizing Classification Structure of Large-Scale Classifiers
Visualizing Classification Structure of Large-Scale Classifiers
B. Alsallakh
Zhixin Yan
Shabnam Ghaffarzadegan
Zeng Dai
Liu Ren
FAtt
10
1
0
12 Jul 2020
InsideBias: Measuring Bias in Deep Networks and Application to Face
  Gender Biometrics
InsideBias: Measuring Bias in Deep Networks and Application to Face Gender Biometrics
Ignacio Serna
Alejandro Peña
Aythami Morales
Julian Fierrez
CVBM
14
61
0
14 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Semantic Pyramid for Image Generation
Semantic Pyramid for Image Generation
Assaf Shocher
Yossi Gandelsman
Inbar Mosseri
Michal Yarom
Michal Irani
William T. Freeman
Tali Dekel
GAN
28
55
0
13 Mar 2020
Neuron Shapley: Discovering the Responsible Neurons
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
Semantics for Global and Local Interpretation of Deep Neural Networks
Semantics for Global and Local Interpretation of Deep Neural Networks
Jindong Gu
Volker Tresp
AI4CE
27
14
0
21 Oct 2019
Generative Counterfactual Introspection for Explainable Deep Learning
Generative Counterfactual Introspection for Explainable Deep Learning
Shusen Liu
B. Kailkhura
Donald Loveland
Yong Han
22
90
0
06 Jul 2019
Model Agnostic Contrastive Explanations for Structured Data
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
20
82
0
31 May 2019
Leveraging Latent Features for Local Explanations
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
46
37
0
29 May 2019
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for
  Investigating Learned Representations
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations
J. Livezey
Ahyeon Hwang
Jacob Yeung
K. Bouchard
36
0
0
23 May 2019
Understanding Neural Networks via Feature Visualization: A survey
Understanding Neural Networks via Feature Visualization: A survey
Anh Nguyen
J. Yosinski
Jeff Clune
FAtt
13
160
0
18 Apr 2019
Optimising the Input Image to Improve Visual Relationship Detection
Optimising the Input Image to Improve Visual Relationship Detection
Noel Mizzi
A. Muscat
8
2
0
26 Mar 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
Low-Cost Transfer Learning of Face Tasks
Low-Cost Transfer Learning of Face Tasks
T. John
Isha Dua
V. Balasubramanian
C. V. Jawahar
CLIP
CVBM
VLM
13
0
0
09 Jan 2019
A Visual Interaction Framework for Dimensionality Reduction Based Data
  Exploration
A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration
M. Cavallo
Çağatay Demiralp
11
55
0
28 Nov 2018
Techniques for Interpretable Machine Learning
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
39
1,071
0
31 Jul 2018
Do Convolutional Neural Networks Learn Class Hierarchy?
Do Convolutional Neural Networks Learn Class Hierarchy?
B. Alsallakh
Amin Jourabloo
Mao Ye
Xiaoming Liu
Liu Ren
42
210
0
17 Oct 2017
CNNComparator: Comparative Analytics of Convolutional Neural Networks
CNNComparator: Comparative Analytics of Convolutional Neural Networks
Haipeng Zeng
Hammad Haleem
Xavier Plantaz
Nan Cao
Huamin Qu
19
31
0
15 Oct 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Comparing Neural and Attractiveness-based Visual Features for Artwork
  Recommendation
Comparing Neural and Attractiveness-based Visual Features for Artwork Recommendation
Vicente Dominguez
Pablo Messina
Denis Parra
Domingo Mery
C. Trattner
Á. Soto
14
15
0
22 Jun 2017
12
Next